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The complexity of NF-κB signaling in inflammation
and cancer
Bastian Hoesel and Johannes A Schmid*
Abstract

The NF-κB family of transcription factors has an essential role in inflammation and innate immunity. Furthermore,
NF-κB is increasingly recognized as a crucial player in many steps of cancer initiation and progression. During these
latter processes NF-κB cooperates with multiple other signaling molecules and pathways. Prominent nodes of
crosstalk are mediated by other transcription factors such as STAT3 and p53 or the ETS related gene ERG. These
transcription factors either directly interact with NF-κB subunits or affect NF-κB target genes. Crosstalk can also
occur through different kinases, such as GSK3-β, p38, or PI3K, which modulate NF-κB transcriptional activity or affect
upstream signaling pathways. Other classes of molecules that act as nodes of crosstalk are reactive oxygen species
and miRNAs. In this review, we provide an overview of the most relevant modes of crosstalk and cooperativity
between NF-κB and other signaling molecules during inflammation and cancer.
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Introduction
The transcription factor NF-κB was discovered in 1986 as
a nuclear factor that binds to the enhancer element of the
immunoglobulin kappa light-chain of activated B cells
(thereby coining the abbreviation NF-κB) [1]. Soon after-
wards it became clear that proteins, which harbor this spe-
cific DNA binding activity are expressed in nearly all cell
types and regulate many target genes with a whole variety
of functions [2]. In total, five members of this transcription
factor family have been identified, designated as p65
(RelA), RelB, c-Rel, NF-κB1 and NF-κB2 (Figure 1A). In
contrast to the other family members, NF-κB1 and NF-
κB2 are synthesized as pro-forms (p105 and p100) and are
proteolytically processed to p50 and p52 (Figure 1A, black
arrows), respectively [3]. All five members of this protein
family form homo- or heterodimers and share some struc-
tural features, including a Rel homology domain (RHD),
which is essential for dimerization as well as binding to
cognate DNA elements [4]. In most quiescent cells these
dimers are bound to inhibitory molecules of the IκB family
of proteins (inhibitors of NF-κB) (Figure 1B). These inhibi-
tors are characterized by ankyrin repeats, which associate
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with the DNA-binding domains of the transcription fac-
tors thereby making them transcriptionally inactive. Inter-
estingly, p105 and p100, the precursors of p50 and p52,
also contain ankyrin repeats, which are cleaved upon mat-
uration - thus comprising their own internal inhibitors. In
contrast to the other members of the NF-κB family these
two proteins do not contain a transactivation domain [5].
As a consequence, dimers of p50 and p52, which bind to
NF-κB elements of gene promoters, act as transcriptional
repressors [6]. However, when p50 or p52 are bound to a
member containing a transactivation domain, such as p65
or RelB, they constitute a transcriptional activator. An-
other interesting aspect is that one member of the
IκB family, Bcl-3, also contains transactivation domains
(Figure 1B) and can bind to dimers of p50 and p52 render-
ing the complex transcriptionally active [7-9]. The com-
plexity of this transcriptional regulation system is also
augmented by the fact that different NF-κB dimers have
differential preferences for variations of the DNA-binding
sequence [10]. Thus different target genes are differentially
induced by distinct NF-κB dimers. Furthermore, NF-κB
subunits also contain sites for phosphorylations and other
post-translational modifications which are important for
activation and crosstalk with other signaling pathways
[11]. Binding of NF-κB dimers to IκB molecules does not
only prevent binding to DNA, but also shifts the steady-
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Figure 1 Members of the NF-κB signaling pathway and the IκB kinase-complex. (A) The five members of the NF-κB family of proteins: RelA
(p65), RelB, c-Rel,NF-κB1 (p105), and NF-κB2 (p100). p105 and p100 are processed to their shorter forms p50 and p52, respectively. All members of
the NF-κB family harbor an N-terminal Rel homology domain (RHD), which mediates DNA contact and homo- and heterodimerization. Three
family members (RelA, RelB and c-Rel) contain C-terminal transactivation domains (TAs), which are essential for transcriptional activity. (B) The IκB
family of proteins consists of four members: IκBα, IκBβ, IκBε and BCL-3. These proteins are characterized by the presence of ankyrin (ANK) repeats,
which mediate binding of IκBs to the NF-κB family of proteins. Based on the presence of ankyrin repeats, p100 and p105 can also be included
into the IκB family – as their DNA-binding RHD domain is covalently linked to an IκB-like inhibitory domain. In addition to the ANK repeats IκBα
and IκBβ contain PEST domains, which are enriched in proline, glutamate, serine and threonine and are required for constitutive turnover. BCL-3
differs from other IκB family members by containing TA domains, which mediate transcriptional activity when BCL-3 is associated with NF-κB
dimers that bind to DNA. (C) The three most important members of IκB kinase (IKK) complex: NF-κB Essential Modulator (NEMO or IKKγ), IκB
kinase α, (IKKα or IKK1) and IκB kinase β (IKKβ or IKK2). Further abbreviations: leucin-zipper-like motif (LZ), death domain (DD), coiled-coil domain
(CC), zinc-finger domain (ZF), helix-loop-helix domain (HLH), NEMO-binding domain (NBD). It is important to note that the total number of amino
acids of protein as well as the start and end of some domains can differ between publications and databases.
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state localization of the complex to the cytosol. Neverthe-
less, shuttling between cytosol and nucleus does occur
[12,13], which might be a basis for a low basal transcrip-
tional activity of NF-κB given that the IκB/NF-κB complex
is subject to dissociation and re-association processes.

Signaling pathways activating NF-κB
In general, activation of NF-κB occurs by release from the
IκB molecules or by cleavage of the inhibitory ankyrin re-
peat domains of p100 and p105. This is achieved by
proteasomal degradation of the inhibitors or by partial deg-
radation of the precursors. A prerequisite for the degrad-
ation is polyubiquitination of the target molecules with
lysine-48 linked ubiquitin chains, which is catalyzed by
SCFβTrCP type E3-ligases. These ubiquitination enzymes re-
quire a specific double phosphorylation on the substrate as
recognition site. The latter is catalyzed by an enzyme com-
plex containing IκB kinases (IKK1/IKKα and IKK2/IKKβ)
and at least one non-catalytic accessory protein (NF-κB Es-
sential Modulator, NEMO or also termed IKKγ) [14-16].
This IκB kinase or IKK-complex binds to additional com-
ponents and interacts with upstream signaling molecules
and kinases. A great variety of stimuli can activate the
IKK complex by different mechanisms including phosphor-
ylation of the activation loop of IKK’s (S177 and S181
of IKK2, [17]) by upstream kinases or via proximity-
induced self-activation of IKK-dimers by mutual trans-
phosphorylation [18]. Kinases that mediate phosphorylation
and activation of IKKs include the NF-κB inducing kinase
NIK, which predominantly phosphorylates IKK1 on S176
[19,20], as well as MEKK1, MEKK2, MEKK3 and TGF- β –
activating kinase 1 (TAK1) [21-23]. TAK1 is a member of a
larger protein kinase complex, which consists of TAK1,
TAB1 and TAB2 and can phosphorylate IKK2 as well as
NIK [23,24]. MEKK3 is a member of the MAP3K family
and is known to have a role in TLR4 mediated signaling
[25]. Furthermore it seems that TAK1 and MEKK3
have differential roles in interleukin and Toll-like receptor
mediated NF-κB activation [25,26]. Lysine-63 linked poly-
ubiquitin chains attached to signaling molecules by RING-
type E3 ligases (such as TRAF2 or TRAF6) have been
demonstrated to act as activation platform [27,28], as well
as linear polyubiquitination of upstream effector molecules
[29,30]. These various activation mechanisms guarantee
that all different stress situations can induce the catalytic
activity of IKKs thereby leading to the liberation and activa-
tion of the general stress response factor NF-κB. In
addition, they provide a basis for manifold crosstalk with
other signaling pathways, as well as complex feedback
circuits allowing for a fine-tuning of the response. Since
K63-linked or linear polyubiquitination provide mecha-
nisms for activation of the NF-κB pathway it is plausible
that several of the feedback inhibitors represent de-
ubiquitinases (DUB’s) such as A20 [31] or CYLD [32].
In the canonical activation pathway (Figure 2A), excita-
tory signaling can be mediated through Toll-like receptors
(TLRs), Interleukin-1 receptor (IL-1R), tumor necrosis
factor receptor (TNFR) and antigen receptors. Typical
stimulating signaling molecules are tumor necrosis factor
α (TNFα), lipopolysaccharides (LPS), which are bacterial
cell wall components, and interleukin-1 β (IL-1β) [18,33].
Stimulation through these receptors leads to activation of
the IκB kinase (IKK) complex, which in turn phosphory-
lates IκBα primarily by IKK2.
An alternative pathway of NF-κB activation, also

designated as non-canonical pathway [34] (Figure 2B)
originates from different classes of receptors including
B-cell activation factor (BAFFR), lymphotoxin β-receptor
(LTβR), CD40, receptor activator for nuclear factor kappa
B (RANK), TNFR2 and Fn14 [35]. These lead to activation
of the NF-κB inducing kinase NIK, which phosphorylates
and activates predominantly IKK1. The activity of the lat-
ter enzyme induces phosphorylation of p100 resulting in
its ubiquitination and partial degradation to p52 [36]. The
mechanisms leading to activation of the non-canonical
pathway are thus independent of the activity of IKK2 and
NEMO [37].
In many cases, p100 is associated with RelB, so that its

proteolytic processing induces the formation of a tran-
scriptionally active RelB/p52-complex [38,39]. Besides
the canonical and the alternative pathway, additional
pathways of NF-κB activation exist, sometimes termed
atypical activation pathways (Figure 2C). One of these is
activation of the IKK complex after genotoxic stress via
the kinase ATM leading to ubiquitination of NEMO
[40]. Others involve tyrosine kinases or casein kinase 2
[41-43]. The epidermal growth factor receptor (EGFR)
tyrosine kinase has for example been shown to promote
NF-κB dependent transcription in ovarian cancer [44].
After the liberation of various NF-κB dimers following

activation of IKKs, their steady state localization is nor-
mally shifted to the nucleus and the Rel Homology Do-
mains are free to bind cognate DNA-sequences in the
enhancer elements of target gene promoters. Depending
on the accessibility of the genome regulated by epigenetic
mechanisms and the cell type, thousands of different tar-
get genes can be transcriptionally activated. This activation
is further controlled by additional transcription factors,
which can either enhance or reduce the effect of NF-κB –
establishing another level of complexity and crosstalk with
signaling pathways that activate other transcription fac-
tors. The manifold post-translation modifications of RelA
add another layer of complexity to NF-κB signaling. These
have been shown to be necessary for various aspects of
RelA functions (Figure 3). Amongst these, phosphoryla-
tions at specific serine or threonine residue are known to
be particularly important since they often stimulate tran-
scriptional activity. The most important phosphorylations



Figure 2 The canonical, non-canonical and the atypical NF-κB signaling pathway. (A) In the canonical NF-κB signaling pathway
lipopolysaccharides (LPS), tumor necrosis factor α (TNFα) orinterleukin-1 (IL-1) activate Toll-like receptors (TLRs), tumor necrosis factor receptor (TNFR)
and interleukin-1 receptor (IL-1R), respectively. Through a variety of adapter proteins and signaling kinases this leads to an activation of IKKβ in the IKK
complex, which can then phosphorylate IκBα on Serine residues S32 and S36. This phosphorylation is a prerequisite for its subsequent
polyubiquitination, which in turn results in proteasomal degradation of IκBα. NF-κB homo- or heterodimers can then translocate to nucleus and
activate target gene transcription. (B) In the non-canonical NF-κB signaling pathway, activation of B-cell activation factor (BAFFR), CD40, receptor
activator for nuclear factor kappa B (RANK) or lymphtoxin β-receptor (LTβR), leads to activation of IKKα by the NF-κB-inducing kinase (NIK). IKKα can the
phosphorylate p100 on serine residues S866 and S870. This phosphorylation leads to polyubiquitination of p100 and its subsequent proteasomal
processing to p52.p52-RelB heterodimers can then activate transcription of target genes. (C) In the atypical NF-κB signaling pathway, genotoxic stress
leads to a translocation of NEMO to the nucleus where it is sumoylated and subsequently ubiquitinated. This process is mediated by the ataxia
telangiectasia mutated (ATM) checkpoint kinase. NEMO and ATM can then return to the cytosol where they activate IKKβ.
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of RelA, their positions and the corresponding kinases are
summarized in Table 1. The activity of NF-κB is not only
influenced by a variety of phosphorylations, but also by
dynamic and complex protein-protein interactions gener-
ating a sophisticated network of interdependencies and
feedback loops [45]. Besides the very well defined interac-
tions between the various members of the NF-κB family,
and the interactions with their inhibitors such as IκBα,
IκBβ or IκBε [46-49], NF-κB molecules have been shown
to interact with upstream kinases, with chromatin-
modifiers such as histone deacetylases (HDACs), p300 or
CBP and also with other transcription factors [50-53]. The
network of protein interactions involving NF-κB mole-
cules is very complex. The interaction database IntAct
(http://www.ebi.ac.uk/intact/) currently lists 306 binary in-
teractions for the NF-κB member RelA alone. To illustrate
at least part of this interaction network graphically, we
performed a STRING database search (at http://string-
db.org/) for proteins interacting either physically or
functionally with NF-κB molecules using all five family
members as input (Figure 4).
Termination of the transcriptional activity of NF-κB is
mainly achieved by the fact that NF-κB up-regulates its
own inhibitors of the IκB family, where the best studied ex-
ample is IκBα [74,75]. Newly synthesized IκBα enters the
nucleus, removes NF-κB from the DNA and relocates it to
the cytosol [11]. In addition, negative regulators of the NF-
κB signaling pathway such as A20 [31] and CYLD [32] are
up-regulated by NF-κB. In acute inflammation, these nega-
tive feedback loops usually result in complete de-activation
of NF-κB to the normal background level. However, in
chronic inflammatory conditions, the persistent presence
of NF-κB activating stimuli seems to outperform the
inhibitory feedback circuits leading to an elevated constitu-
tive activity of NF-κB.

The NF-κB signaling pathway in inflammation
and cancer
Inflammation is the process of innate immunity in re-
sponse to physical, physiological and/or oxidative stress
and is associated with activation of the canonical NF-κB
signaling pathway, which is conserved in all multicellular
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Figure 3 Post-translational modifications of RelA, IκBα and IκBβ. Phosphorylations, acetylations and methylations of RelA are shown, as well
as phosphorylations, ubiquitination and sumoylation of IkBα and IkB.
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animals [76]. Inflammation in general and NF-κB in par-
ticular have a double-edged role in cancer. On one hand,
activation of NF-κB is part of the immune defense, which
targets and eliminates transformed cells. This seems to be
particularly true for acute inflammatory processes, where
full activation of NF-κB is accompanied by a high activity
of cytotoxic immune cells against cancer cells [77]. On the
other hand, NF-κB is constitutively activated in many
types of cancer and can exert a variety of pro-tumorigenic
functions. The effectiveness of the immune system against
malignant cells has been unveiled by the observation that
pharmacologically immune-suppressed individuals, e.g.
after organ transplantations, have a higher cancer risk.
This anti-tumorigenic function of the immune systems
with NF-κB being an important effector of it, has been
designated as tumor-immunosurveillance [78]. This im-
mune defense against cancer cells, however, is normally
not tight enough to eliminate all the aberrant cells,
resulting in a shift to an equilibrium phase, which is often
followed by an “escape” phase of the cancer cells, in which
they outperform the immune system [79]. The latter two
phases seem to be characterized by a chronic inflammatory
condition with often only moderately elevated levels of
NF-κB activity. The notion that such a constitutive activity
of NF-κB exerts a pro-tumorigenic effect is underscored by
the observation that patients with chronic inflammatory
diseases have higher risks for cancer similar to immune-
suppressed patients (see accompanying article). NF-κB
activation usually results in the up-regulation of anti-
apoptotic genes thereby providing cell survival mechanism



Table 1 Positions of Phosphorylations of RelA and corresponding kinases

Kinase p65 target residue Effect of phosphate References

unknown S205 stimulates transcriptional activity [54]

MSK1 S276 stimulates transcriptional activity [55]

PIM1 S276 stimulates transcriptional activity [56]

PKAc S276 stimulates transcriptional activity [57,58]

unknown S281 stimulates transcriptional activity [54]

PKCζ S311 stimulates transcriptional activity [59]

GSK-3β S468 stimulates transcriptional activity [60]

IKK2 S468; S536 stimulates transcriptional activity and nuclear import [61,62]

IKKε S468;S536 stimulates transcriptional activity [63,64]

CKII S529 stimulates transcriptional activity [65]

CaMKIV S535 stimulates transcriptional activity [66]

TBK1 S536 stimulates transcriptional activity [67]

IKK1 S536 stimulates transcriptional activity and stabilization [68]

RSK1 S536 decreases IκBα -mediated nuclear export [69]

ATM S547 Increased expression of specific genes [70]

unknown T254 stabilization and nuclear localization [71]

unknown T435 stimulates transcriptional activity [72]

CHK1 T505 pro-apoptotic effect [73]
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to withstand the physiological stress that triggered the in-
flammatory response. Furthermore, NF-κB induces cyto-
kines that regulate the immune response (such as TNFα,
IL-1, IL-6 and IL-8), as well as adhesion molecules, which
lead to the recruitment of leukocytes to sites of inflamma-
tion. In addition to its role in innate immunity NF-κB sig-
naling was shown to control a great variety of other well
conserved cellular processes, including cell proliferation
[80,81] and apoptosis [82]. The contribution of inflamma-
tion in general and NF-κB in particular to cancer initiation
and progression is manifold and complex. It is postulated
that the innate immune response of neutrophils that re-
lease reactive oxygen species to kill invading pathogens
might cause DNA-damage and thus genetic mutations as
side effects, thereby triggering tumor initiation [83]. More-
over, NF-κB signaling was shown to contribute to cancer
progression by controlling epithelial to mesenchymal tran-
sition and metastasis [84]. The latter is often associated
with an up-regulation of matrix metalloproteinases
(MMPs), loosening the extracellular matrix for an eva-
sion of cancer cells. Finally, NF-κB can also contribute
to tumor progression by controlling vascularization of
tumors via upregulation of VEGF (vascular endothelial
growth factor) and its receptors [85,86].
A tumor can principally establish elevated NF-κB ac-

tivity by intrinsic or extrinsic factors [87]. On the one
hand, enhanced NF-κB activity can be directly induced
by mutations of NF-κB genes and/or oncogenes that ac-
tivate the NF-κB signaling pathway. On the other hand,
a tumor can achieve elevated NF-κB activity through
increased cytokine release from the tumor microenvir-
onment [76].
Direct mutations of NF-κB signaling genes have so far

been detected mainly in lymphoid malignancies. Amplifica-
tion and point mutations of RelA were detected in human
B-cell lymphomas such as Hodgkin lymphoma and to a
lower extent also in T-cell lymphomas, reflecting the direct
oncogenic potential of the NF-κB signaling pathway which
was suggested since the initial discovery of the oncogenic
RelA homologue v-Rel [88]. Furthermore, chromosomal
truncations of the NFKB2 gene have been detected in cer-
tain lymphomas [89,90]. Moreover, mutations of other
members of the NF-kB signaling pathway including Bcl-3
and c-Rel have been detected in B-cell leukemia and sev-
eral types of B-cell lymphomas, respectively [91-94].
In solid tumors, in contrast, direct mutations of the NF-

κB signaling pathway are rare events [95]. Nevertheless,
they do occur, as exemplified by a recently discovered
gene fusion between IKK2 and TNPO1 (transportin 1),
which resulted in elevated IKK2 expression levels in pros-
tate cancer [96]. Furthermore, a recent study on breast
cancer revealed mutations in NFKB1, the upstream kinase
IKK2, as well as the inhibitors IκBα and IκBε [97]. Studies
with transgenic mice suggest a direct contribution of the
NF-κB signaling pathway to the development of various
solid tumors. The maybe best-studied example is inflam-
mation associated colon cancer, where IKK2-induced NF-
κB within intestinal epithelial cells has an essential role for
tumor formation. Furthermore, IKK2-mediated NF-κB ac-
tivity within myeloid cells of the tumor environment
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contributes to tumor progression by inducing the secre-
tion of cytokines and growth factors [98]. A different
inflammation-associated type of cancer is hepatocellular
carcinoma, a form of liver cancer, which can occur after
viral hepatitis or after liver damage induced by carcino-
genic substances. Interestingly, the role of NF-κB in liver
cancer seems to depend very much on the precise mech-
anism of cancer development. Tumors associated with
chronic inflammation seem to require NF-κB within hepa-
tocytes as anti-apoptotic survival factor. However, in cer-
tain types of chemically induced liver cancer, hepatocytic
NF-κB in contrary acts as tumor suppressor as shown by
mouse studies with hepatocyte-specific deletion of IKK2
or NEMO and treatment with diethylnitrosamine (DEN)
Figure 4 Network of NF-κB interactors. Evidence view of the STRING da
NF-κB proteins, RelA, Rel (c-Rel), RelB, NFKB1 and NFKB2 obtained from: htt
as carcinogen [99]. Nevertheless, this type of cancer still
requires NF-κB within Kupffer cells (the resident macro-
phages of the liver), which is essential for secretion of IL-6
and activation of STAT3 in neighboring hepatocytes.
Thus, the cellular location of NF-κB activity is fundamen-
tal for the development of liver cancer. Another cancer
that depends on NF-κB activity is melanoma, as it could
be shown that HRas-mediated initiation of tumorigenesis
requires IKK2-mediated NF-κB activation in a mouse
model of melanoma [100] and even for lung cancer it
could be demonstrated that IKK2 and NF-κB are crucial
cofactors [101]. In general, aberrant NF-κB activity seems
to have an important role as co-factor in solid tumors by
acting as survival factor for transformed cells, which
tabase output depicting functional and physical interactors of the
p://string-db.org/. The five NF-κB proteins are highlighted in red.
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would otherwise become apoptotic or senescent. This ele-
vated constitutive NF-κB activity is usually achieved
through continuous release of cytokines by macrophages
in the tumor microenvironment. However, there is still a
mystery in the crosstalk between solid tumors and neigh-
boring macrophages: While most tumors are character-
ized by elevated levels of cytokines released by classically
(M1)-activated macrophages, such as TNFα and IL-1β, the
macrophages in the tumor microenvironment seem to
switch to the M2-phenotype, the so-called alternatively ac-
tivated form, which seems to be the predominant form of
tumor-associated macrophages (TAMs) - releasing rather
anti-inflammatory cytokines. IKK2 and NF-κB apparently
polarize macrophages towards the alternatively activated
M2 phenotype, which tolerates and even fosters the tumor
instead of attacking it [102]. It seems possible, that the
timing is crucial for the crosstalk between tumor cells and
macrophages. An initial inflammatory environment trig-
gered by the tumor might induce the secretion of TNFα
and IL-1β from resident macrophages, whereas prolonged
tumor growth and chronic inflammation might lead to a
shift towards tumor-associated, M2-type macrophages – a
notion that is also in line with the concept that tumors are
interpreted by the organism often as “wounds that do not
heal” [103]. In addition to the role of NF-κB for survival of
cancer cells or the response of immune cells to cancer, NF-
κB has recently been shown to be activated in cancer stem
cells (CSCs), where it can promote a pro-inflammatory
environment, inhibit apoptosis and stimulate cell-
proliferation. Cancer stem cells comprise only a minor sub-
population of cancer cells and are thought to mediate
tumor growth and resistance to chemotherapy [104,105].
Crosstalk of NF-κB with other transcription factors
In general, transcription factors can exert mutual influ-
ences by a variety of mechanisms. One of them is direct
physical association, which can influence transcriptional
activity or DNA-binding. Direct binding to NF-κB is
known for several transcription factors including STAT3,
p53, estrogen receptor, ATF3, SMAD3 and 4 (according to
the IntAct database). Furthermore, transcription factors
often bind in close vicinity to each other on their cognate
sequences of promoter or enhancer elements thereby facili-
tating the recruitment of components of the transcriptional
machinery. In this way, they can either enhance or repress
the function of another transcription factor [106]. Func-
tional links between NF-κB and other transcription factors
are therefore manifold – depending on the promoter struc-
ture of target genes. Several of these links have been stud-
ied and characterized in more detail, in particular those
with STAT family members (signal transducers and activa-
tors of transcription) and with the p53 tumor suppressor
[107,108].
NF-κB and STAT3 cooperatively regulate a number of
target genes including anti-apoptotic as well cycle control
genes. Moreover, they also synergistically control a com-
mon set of genes encoding for cytokines and chemokines
[109,110]. It has been shown that p65 and p50 NF-κB inter-
act physically with STAT3, facilitating NF-κB recruitment
to STAT3 promoters and vice versa. In addition, there is
another level of regulation, as it has been shown that
STAT3 can modify RelA post-translationally by recruitment
of the acetyltransferase p300, mediating acetylation of NF-
κB and prolongation of its nuclear retention [111]. By that
means STAT3-mediated acetylation affects NF-κB activity -
a mechanism, which plays a role in cancer – as it is often
the result of chronic stimulation with cytokines in a tumor
microenvironment. This chronic inflammation results in an
elevated constitutive activity of NF-κB and a release of cyto-
kines such as IL-6, which by itself activates STAT3. This
can then further prolong NF-κB activity via enhancing its
acetylation. However, STAT3 can also have a tumor sup-
pressor function as shown recently for intestinal cancer,
where it affects the activity of other members of the STAT
family and the expression of cell adhesion molecules [112].
While there is in most cases a positive feedback between
NF-κB and STAT3, a mutual inhibition has been reported
for NF-κB and p53 [113]. The NF-κB subunit RelA has
been shown to inhibit p53 dependent transactivation, while
p53 can also suppress NF-κB transcriptional activity [113].
Recent data indicates that mutant p53 elevates expression of
p52 NF-κB by inducing acetylation of histones via recruit-
ment of CBP and Stat2 on its promoter via CBP-mediated
acetylation [114]. Moreover, it has been shown that the
crosstalk between p53 and NF-κB might also be necessary
for full activity of NF-κB after certain types of stimulation
even including TNFα. This positive cooperativity with NF-κB
seems to be stronger for p53 mutants, providing a potential
explanation for the fact that p53 mutants are much more fre-
quently observed in cancer than p53 deletions [115]. More
recently, crosstalk of NF-κB with another transcription factor
involved in certain types of cancer has been identified – that
with the Ets family member ERG.
ERG has a role in various leukemia [116,117] and in

Ewing sarcoma [118], and more recently it has been found
as being overexpressed in some prostate cancer patients
due to a genomic fusion with the androgen dependent
promoter of the TMPRSS2 gene [119]. Interestingly, an in-
creased NF-κB activity was detected particularly in ERG
fusion-positive prostate cancer patients and cancer cell
lines. It could be shown that the increased NF-κB activity
is associated with phosphorylation of p65 on Ser536 in-
volving signaling through TLR4 [120]. ERG also appears
to regulate expression of the NF-κB target gene ICAM-1
in endothelial cells [121] and additional data suggest that
ERG can stimulate the CXR4/CXCL12 axis, which con-
tributes to metastasis [122].
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Crosstalk of the NF-κB pathway with other signaling
pathways
While our picture of signaling is often rather a one-
dimensional scheme of a signal cascade it is becoming
clear that biological signaling is better described by a dy-
namic signaling network with complex feedback circuits.
However, it is difficult to show this reality of signaling in a
printed manner – as the only way to depict that in publi-
cations is by drawing connections and arrows between sig-
naling pathways and molecules. There are numerous
interactions, links and cooperativities between the NF-κB
pathway and other signaling pathways. One example is the
influence of Glycogen Synthase Kinase GSK3-β on NF-κB
signaling. GSK-3β is a serine/threonine kinase, which was
initially identified as a key regulator of insulin dependent
glycogen synthesis [123], and is known to be a mediator of
a number of major signaling pathways including the
phosphatidyl-inositol-3-kinase (PI3K) pathway, the Wnt
pathway, Hedgehog signaling and Notch [124]. It could be
shown that GSK-3β has a modulating role for the NF-κB
signaling pathway, as it seems to facilitate NF-κB function
through post-transcriptional regulation of the NF-κB com-
plex [125]. This was later verified as only the over-
expression of p65/p50 but not constitutively active IKK2
could rescue pancreatic cancer cells from the effects of
GSK-3β inhibition [126]. It was further demonstrated that
GSK-3β inhibition or down-regulation leads to a decrease
in NF-κB activity within glioma cell lines [127] and that
GSK-3β has a role in modulating cell proliferation in pros-
tate and colon cancer [128,129]. Interestingly it seems that
GSK-3β does not affect the nuclear accumulation of NF-
κB and can additionally influence NF-κB activity through
epigenetic mechanism as it seems to inhibit the NF-κB
complex from binding to certain target promoters through
histone methylation [130]. The exact molecular mechan-
ism of GSK-3β mediated NF-κB modulation remain, how-
ever, elusive and requires further clarification.
Other kinases that have a well-documented link to the

NF-κB pathway are various members of the large
mitogen-activated protein kinase family (MAPK) including
Jun-N-terminal kinase, JNK, and p38 [131]. Both kinases
are also triggered by stimuli that activate NF-κB (such as
TNFα), as adapter proteins lead to a branching of the sig-
naling towards different downstream pathways. The mu-
tual influences of these kinases and NF-κB are pleiotropic.
p38 and related kinases are known to be cofactors in NF-
κB activation [55], whereas there is a rather counteracting
relationship between NF-κB and JNK [132,133]. Further
members of the kinase family, which activate or regulate
NF-κB include protein kinase C (PKC) [134,135] and Akt
triggered by PI3K [136]. However, it is important to note
that the effect of a signaling molecule on NF-κB often
strictly depends on the cell type or the micro-environment
and that even opposite effects can occur in distinct cell
types. This has been reported for instance for the influ-
ence of Akt on NF-κB, which is activating in cell types
such as epithelial cells, but can be inhibitory in macro-
phages [137-140].
In addition to adapter molecules, kinases or ubiquitinases

and de-ubiquitinases, other classes of molecules were
reported to have an influence on NF-κB activity: These in-
clude reactive oxygen species (ROS), which are compounds
containing free electrons usually linked to oxygen atoms
that are not part of an atomic bond. These compounds
react quickly with many other substances leading to their
oxidation and they can even react with nitrogen dissolved
in the aqueous environment generating so called react-
ive nitrogen species (RNS), which themselves lead to
nitrosylations [141]. ROS are often generated within in-
flammatory environments by the action of neutrophils,
which secrete this reactive class of compounds as a
defense mechanism against pathogens by a process called
“oxidative burst” [142]. Furthermore, ROS occur as a con-
sequence of mitochondrial dysfunction in the course of is-
chemia/reperfusion events for instance after myocardial
infarcts or in the case of transplanted organs, which have
been separated from the blood supply for a while followed
by reperfusion and sudden availability of oxygen. ROS can
activate NF-κB by various mechanisms – and on the other
hand, they are also regulated by NF-κB. Several target
genes of NF-κB are involved in the de-toxification of ROS
but some of them that can also have a pro-oxidant func-
tion such as nitric oxid synthases (NOS) pointing at a
complex interplay between ROS and NF-κB [143].

Crosstalk between NF-κB and miRNAs
MicroRNAs (miRNAs) are small noncoding, single stran-
ded RNAs that usually bind to the 3′UTR of protein
coding mRNAs typically leading to mRNA cleavage. Alter-
natively, they can also cause translational repression of
their respective targets [144]. Single miRNA-species can
have multiple target genes thereby regulating several sig-
naling molecules or pathways. Furthermore, miRNAs are
themselves transcriptional targets, thus providing a mech-
anism for down-regulation of genes by activation of tran-
scription factors. Several miRNAs have been shown to be
transcriptional targets of NF-κB including miR-9, miR-21,
miR-143, miR-146 and miR-224 [145-150]. These miRNAs
are often involved in feedback mechanisms that fine-tune
the activity of NF-κB by targeting some of the upstream
signaling molecules or members of the NF-κB family
themselves. Furthermore, NF-κB can induce the synthesis
of proteins that regulate miRNAs. The most important ex-
ample for that so far is the NF-κB-dependent induction of
Lin28, a protein which inhibits the processing and matur-
ation of let-7 miRNAs – a family of miRNAs that is often
down-regulated in cancer and which seems to act as tumor
suppressor. Let-7 miRNAs target IL-6 – thus a reduction
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of let-7 leads to higher levels of IL-6 and further activation
of NF-κB generating a positive feedback loop [151]. In
addition to regulating miRNAs directly or indirectly, NF-
κB activity itself is regulated by several miRNAs that either
repress NF-κB family members directly or some of the up-
stream signaling molecules.
In a recent report it was shown that miR-15a, miR-16

and miR-223 can influence IKK1 protein expression during
macrophage differentiation. Interestingly, these miRNAs
did not affect IKK2 or NEMO expression suggesting that
they might be modifiers of the non-canonical NF-κB signal-
ing pathway [152]. Another study showed that miR-502e
acts as tumor suppressor by modifying cell proliferation in
hepatoma cell lines and hepatocellular carcinoma. The au-
thors suggested that this function is due to the ability of
targeting NIK thus directly influencing the non-canonical
NF-κB pathway [153]. A depiction of the crosstalk between
miRNAs and members of the NF-κB signaling pathway is
summarized very well in [146] (Figure 5).
Figure 5 Crosstalk of the canonical NF-κB pathway with other signali
activate the IKKα and IKKβ subunits of the IKK complex or can enhance NF
kinase 3β (GSK3β), Protein Kinase B (PKB or Akt), Protein Kinase R (PKR), Pro
(MAP3K7 or TAK1), p38 MAP Kinases or c-Jun N-terminal kinases (JNKs). (B)
Signal Transducer and Activator of Transcription 3 (STAT3) can influence th
NF-κB target genes. (C) microRNAs (miRNAs) can be target genes of the NF
members or effector molecules of the NF-κB activation pathway. (D) Promi
anti-apoptotic genes as the Baculoviral IAP repeat-containing proteins (BIRC
Interleukin-1 (IL-1), IL-6, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), ad
(VCAM-1) and the Intercellular Cell Adhesion Molecule 1 (ICAM-1). (E) Anot
feedback mechanism. Examples for positive feedback molecules are the X-
Important negative feedback circuits are generated by the NF-κB target ge
NF-κB as target in drug combination therapies
of cancer
Given its role in the initiation and progression of cancer,
the NF-κB signaling pathway is a potent node of pharma-
cological interference in the clinics (see accompanying
article). Since NF-κB is also an essential player in the im-
mune response against cancer, there had always been a
reluctance to use NF-κB inhibitors in the treatment of ma-
lignancies. Nevertheless, combining classical chemothera-
peutics with inhibitors of NF-κB activation seems to result
in promising synergies (see [154-165] for some examples).
Most cancer drugs are cytotoxic agents that drive prolifer-
ating cells into apoptosis, e.g. by interfering with DNA
synthesis. Elevated NF-κB activity in cancer cells provides
a survival mechanism by up-regulating anti-apoptotic
genes, thereby representing a major causative factor for
drug resistance [155,157,160,164,166]. Inhibition of NF-κB
is also thought to be at least one mechanism of action of
proteasome inhibitors in cancer treatment as activation of
ng processes. (A) Many different kinases can phosphorylate and
-κB transcriptional activity. Important examples are glycogen synthase
tein Kinase C (PKC), Mitogen-Activated Type 3-Protein Kinase 7
Various transcription factors such as p53, Ets Related Gene (ERG) or
e transcriptional activity of NF-κB or directly activate transcription of
-κB signaling pathways or can affect the expression of NF-κB family
nent target genes of the NF-κB signaling pathway include
s or cIAPs) and the B-cell lymphoma 2 gene (Bcl-2), cytokines such as
hesion factors including the Vascular Cell Adhesion Molecule 1
her layer of complexity of NF-κB signaling are positive and negative
linked inhibitor of apoptosis protein (XIAP) as well as TNFα or IL-1.
nes IκBα, Cylindromatosis (CYLD) or A20.
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NF-κB requires the proteasomal degradation of IκB mole-
cules [158,165,167].
A crucial aspect in using NF-κB inhibitors might be an

appropriate timing with respect to the cancer stage or the
treatment phase. While inhibition of NF-κB is undesirable
during the tumor-eliminating phase of the immune sys-
tem, when immune cells target transformed cells, NF-κB
inhibition is expected to have positive effects in the
chronic inflammatory phase of tumor progression. The
use of NF-κB inhibitors might be beneficial for instance, in
the treatment of metastatic prostate cancer when applied
synchronously with androgen antagonists or drugs that
block androgen synthesis. In this case, the withdrawal of
androgens induces the apoptosis of many but often not all
androgen-dependent prostate cancer cells. The survival of
a small fraction of cells – e.g. due to elevated NF-κB activ-
ity and increased anti-apoptosis mechanisms can then re-
sult in the development of androgen-independent cancer
cells, which are difficult to target. The application of NF-
κB inhibitors in combination with anti-androgen therapy
is expected to result in a more efficient killing of the pros-
tate cancer cells and a slower or less likely recurrence of
cancer. Similar considerations apply to the combination of
radiotherapy with inhibition of NF-κB, as radiation-
induced up-regulation of NF-κB is thought to counteract
the therapy by promoting the survival of cancer cells
[168]. Another important aspect is that inhibition of
NF-κB might target cancer not only directly by blocking
anti-apoptosis mechanisms of malignant cells, but also
indirectly by shifting macrophages from the tumor-
tolerating M2-polarization stage towards the tumor-
attacking M1-stage [102].

Conclusion
NF-κB represents a central factor in inflammation, stress
response, cell differentiation or proliferation as well as cell
death. It can be activated by a great variety of stimuli and
a complex network of signaling pathways, which can also
influence each other. Furthermore, it regulates a huge var-
iety of target genes generating sophisticated feedback cir-
cuits that comprise all elements of cellular regulators such
as cytokines, growth factors, adhesion molecules, intracel-
lular signaling molecules, transcription factors as well as
miRNAs. Thus NF-κB and members of its signaling net-
work have essential roles in the complete flux of biological
information from transcription to regulation of RNA-
function and turnover, the synthesis of proteins, their
functions and their degradation.
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