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Mesenchymal stem cells: key players in
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Abstract

Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment.
The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune
system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas
such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies
have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there.
MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity
to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that
MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour
cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal
transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth
of the primary tumour to the establishment of distant metastasis.
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Background
It is now understood that tumour cells do not act alone.
Cancer cells interact with their surrounding stroma and
these interactions lead to an ‘activated state’ resulting in
increased release of pro-inflammatory cytokines and
growth factors [1]. The tumour is in a chronic state of
inflammation and has been described as a ‘wound that
never heals’ [2]. This inflammatory state drives the
recruitment of responsive cell types such as macro-
phages, myeloid derived suppressor cells and mesenchy-
mal stem cells (MSCs) [3–5]. Cross-talk between cancer
cells and cells of the surrounding stroma promotes
tumour progression and creates a dynamic extracellular
matrix, favourable for the invasive tumour cell [6, 7].
The tumour stroma varies between each cancer type

and the heterogeneous nature of the tumour makes it
complicated to study. It is important to develop an
understanding of what drives non-cancerous cells toward

an activated state, what that activated state is and what it
subsequently means for tumour cell progression.
MSCs are multipotent stem cells originally found to

have the capacity to differentiate into the tri-lineages -
osteoblasts, chondrocytes and adipocytes [8]. They are
generally characterised by their tri-lineage differentiation
capacity and by positivity for surface markers CD73,
CD105 and CD90 [9]. More recent developments have
revealed a wider range in differentiation potential such
as differentiation to myocytes and neurons [10, 11].
They can be sourced from the bone marrow, adipose
tissue and dental pulp [8, 12–14]. They are also found in
circulation and are known to home to inflammatory sites
[15]. Due to their capacity to home to injured tissue,
research has suggested a reparative function for MSCs
in multiple tissues including the lung [16], liver [17],
brain [18] and heart [19].
MSCs reside in the bone marrow stroma alongside

haematopoietic stem cells (HSCs), osteoblasts, osteo-
clasts, adipocytes, endothelial cells (ECs) and monocytes
[20, 21]. MSCs may play a supportive role for HSCs and
have previously been used to enhance long-term HSC
engraftment in human transplantation [22, 23].
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Knowledge of these characteristics as well as their dif-
ferentiation capacity has caused excitement in the field
of regenerative medicine and use of MSCs has potential
for therapeutics in a range of fields such as cardiology,
immunology and neurology. However, in the field of
cancer research many studies suggest that MSC activity
may contribute to poorer outcomes [24–27].
In recent studies, it has been shown that MSCs can

also home to tumour sites and contribute to tumour
growth and progression [26–29]. Analysis from human
prostatectomies showed that MSCs represented 0.01–
1.1% of total cells present in the prostate tumour
[30]. MSCs have been found to increase the meta-
static potential of tumour cells by promoting their motility
and invasiveness as well as having a role in the creation of
a metastatic niche at the secondary site [26, 31–33].

Main text
Mesenchymal stem cells at the primary tumour site
MSCs have been implicated in the promotion of tumour
growth in numerous cancer types such as follicular
lymphoma [24], head and neck carcinoma [25], glioma
[34], breast [26], gastric [35], colon [36] and prostate
cancer [27].

Karnoub and colleagues showed that co-injection of
human bone marrow MSCs with only one of four breast
cancer cell lines (MCF7) into mice led to accelerated
tumour growth, however, co-injection with all cell lines
(MDA-MB-231, HMLR, MDA-MB-435 and MCF7) led
to increased metastasis [26]. Similarly, in a more recent
study it was found that co-injection of human bone mar-
row MSCs with the triple negative inflammatory breast
cancer cell line, SUM149, resulted in inhibited primary
tumour growth but increased invasion and metastasis in
mice [37]. These findings indicate a role for MSCs at the
tumour site in the promotion of metastasis possibly
through the induction of epithelial-to-mesenchymal
transition (EMT) in primary tumour cells.
An increase in tumour growth was also found in mice

following co-injection of human adipose tissue derived
MSCs with the prostate cancer cell line MDA-PCa-118b
[27]. In another study bone marrow MSCs were also
found to stimulate the proliferation, migration and inva-
sion of the prostate cancer cell line PC3 in vitro (see
Fig. 1). This effect was inhibited by blocking transforming
growth factor β (TGFβ) [38]. A similar study showed that
TGFβ immunodepletion from oncostatin M treated
human adipose tissue derived MSC conditioned media

Fig. 1 MSC and tumour cell interaction in cancer progression. MSCs have been shown to interact with tumour cells at the primary site and during
metastatic colonisation in a manner that promotes cancer progression. MSCs have been shown to promote EMT in tumour cells through direct cell-
cell contact, which could in part be due to TGFβ secretion [38, 82]. Additionally, tumour cell secretion of osteopontin (OPN) was found to induce MSC
secretion of chemokine (C-C motif) ligand 5 (CCL5) stimulating breast cancer cell metastasis through interaction with the C-C chemokine receptor type
5 (CCR5) receptor [84]. Tumour cell migration towards and entry into the bone marrow metastatic site was shown to be mediated by
stromal cell-derived factor 1 (SDF-1α) – a factor secreted by bone marrow MSCs – interaction with the C-X-C chemokine receptor type
4 (CXCR4) receptor expressed on breast and prostate tumour cells [33, 102, 103]
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reduced the adhesion capacity of PC3 cells in vitro [39].
Like many growth factors and cytokines TGFβ plays a dual
role in cancer. TGFβ can have a suppressive effect during
the early initiating steps of carcinogenesis, acting as a
tumour suppressor inhibiting cell proliferation, while in
later stages it can induce epithelial to mesenchymal transi-
tion promoting the development of metastatic disease
[40]. Of particular note is the dependency on stromal
derived TGFβ for colorectal cancer metastasis initiation
[41], and the association of stromal TGFβ expression with
breast cancer outcome [42].
Some research groups have investigated the tumour

promoting function of MSCs isolated from the tumour,
arguably a more realistic approach to understanding the
role of MSCs within the tumour microenvironment. Co-
injection of MSCs isolated from human head and neck
carcinoma [43], gastric cancer [25] and gliomas [34] with
tumour cells into mouse models resulted in an increase
in tumour growth and progression. Interestingly, Li and
colleagues found that MSCs isolated from human gastric
cancer tumours stimulated increased proliferation and
migration of gastric cancer cell lines (BGC-823 and
MKN-28) in vitro in comparison to bone marrow derived
MSCs or MSCs isolated from non-cancerous adjacent
tissue. They also found that they secreted more vascular
endothelial growth factor (VEGF), macrophage inflamma-
tory protein-2, TGF-β1, and the pro-inflammatory cyto-
kines interleukin (IL)-6, and IL-8 while blockade of IL-8
attenuated the tumour promoting function of the gastric
cancer MSCs [35].
From the studies described thus far, we can ascertain

that MSCs are important players in the promotion of
tumour growth and progression. Key thoughts to con-
sider at this point would be whether naïve MSCs can
induce such an effect upon arrival at the tumour
through paracrine signalling and cell-cell contact, or do
tumour microenvironment exposed MSCs transition to
a determined ‘activated’ or reprogrammed state. The
studies discussed above describing MSCs directly iso-
lated from the tumour give evidence to the latter
whereby tumour derived MSCs differed in activity to
naïve bone marrow derived MSCs. Taking this into ac-
count, future studies should consider further investiga-
tion into the functional and molecular differences that
occur in MSCs isolated from various tumour types. Are
they functionally, morphologically and molecularly the
same or does it depend on the tumour source?

Role in tumour suppression
In contrast to the research described above there is evi-
dence to suggest that MSCs can also have an inhibitory
effect on tumour growth. Suppression of tumour growth
has been noted in breast cancer [44], Kaposi’s sarcoma
[45], hepatoma [46] and melanoma [47] models. Human

MSCs derived from the umbilical cord and adipose
tissue were implanted into a breast cancer metastasis
mouse model and found to inhibit metastasis to the lung
and reduce tumour growth through poly (ADP-ribose)
polymerase (PARP) and caspase-3 cleavage, which could
in turn induce apoptosis [44]. However, MSCs derived
from the bone marrow, adipose tissue and dental pulp
are not functionally identical, therefore the studies using
MSCs derived from other sources may not be replicated
using bone marrow derived MSCs [48, 49].
MSCs are a heterogeneous population of cells contain-

ing subpopulations with differing differentiation capacities
[50]. Moreover, MSCs were found to express embryonic
stem cell or pluripotency markers which differed depend-
ing on the source. Bone marrow derived MSCs were
found to express Oct4, Nanog, alkaline phosphatase and
SSEA-4; adipose and dermis derived MSCs were found to
express Oct4, Nanog, SOX2, alkaline phosphatase and
SSEA-4; while heart MSCs were found to express Oct4,
Nanog, SOX2 and SSEA-4 [51]. It is therefore relevant to
consider the source of MSCs and the techniques used to
isolate and characterise them in each study. Table 1 high-
lights the experimental methods used to identify MSCs in
key studies described in this review. There is an apparent
discrepancy between studies in the techniques used to
isolate the MSCs, where only a portion used gradient
centrifugation to separate a population of MSCs. More-
over, each study uses a different set of criteria to charac-
terise the isolated population. Though the predominant
positive markers used are CD105 and CD90, there is no
overall consistency in molecular or phenotypic character-
isation of the MSCs used in each study. Differences in
isolation techniques and growth conditions can favour
certain subpopulations and future research in this area
should place emphasis on the methods for isolation and
characterisation for increased clarification on the popula-
tion of stromal cells used experimentally.
Otsu et al. showed that murine bone marrow MSCs

had a cytotoxic effect on the tumour in a melanoma
mouse model through the release of reactive oxygen spe-
cies when in contact with ECs present at the capillaries.
This induced apoptosis of the ECs and reduced tumour
growth. However, the cytotoxic effect of the MSC was
only observed when implanted at high concentrations.
MSCs seeded onto EC derived capillaries in matrigel
evoked a cytotoxic effect at a EC:MSC ratio of 1:1 or 1:3.
Cytotoxicity decreased when the MSC number was re-
duced by an order of magnitude [47] and given that in
prostate cancer MSCs were only found to represent
0.01–1.1% of the tumour experiments using a high ratio
of MSCs may not be reflective of the tumour micro-
environment in vivo [30]. These results may explain the
difference in outcome observed in studies showing
tumour growth promotion by MSCs. Further investigation
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on the effect of dose on efficacy is warranted for any
conclusions to be made, nonetheless, when examining the
impact of MSC on tumour biology, the source and specific
ratios of MSC to tumour cells reflective of the natural
tumour environment is an important consideration.
Another explanation for the contrasting results is that

like macrophages there is a polarisation of MSCs in
response to secreted factors from the tumour that either
drives the cells toward a tumour promoting or suppres-
sive function. Tumour infiltrating macrophages can
become induced by the stromal microenvironment and
are referred to as tumour associated macrophages
(TAMs) [52, 53]. Depending on the stimuli, macro-
phages can be polarised toward an M1 or M2 pheno-
type. The M1 phenotype can be induced by interferon
gamma (IFN-γ) and lipopolysaccharides and have been

shown to have cytotoxic effects on tumour cells. In
contrast M2 macrophages are induced by IL-4, IL-13
and IL-10, promote wound healing and angiogenesis and
are phenotypically similar to TAMs [52, 54–56].
MSCs were previously found to express toll-like recep-

tor (TLR)- 1, 2, 3, 4, 5 and 6 and TLR-agonist interaction
stimulated MSC migration and immunomodulatory factor
secretion [57]. In particular LPS stimulation of TLR4
and Poly-IC stimulation of TLR3 resulted in enhanced
phospho-IKKα/β and phospho-MAPK indicting that
activation of TLR4 or TLR3 may regulate NFkB and/or
MAPK signalling in MSCs. In particular IL-6 and IL-8
were highly induced upon TLR4 activation [57]. Interest-
ingly, Waterman and colleagues proposed a polarisation
of MSCs based on TLR signalling. They found functional
differences between human bone marrow derived MSCs

Table 1 Isolation techniques and methods of characterisation used in a selection of studies

Manuscript Origin Species Isolation Technique Characterisation Tumour of
Relevance

Tumour
Function

Karnoub et al.,
2007 [26]

Bone marrow
(hip)

Human Histopaque density
centrifugation, bFGF
supplemented, adherent
to plastic

CD105+, CD45−/GlyA− Breast Promoting

Lacerda
et al., 2015 [37]

Bone marrow Human Purchased from EMD
Millipore (Billerica, MA,
USA) (Part #SCC034,
Lot N61710996)

Markers unspecified. Osteogenic,
adipogenic and chondrogenic
differentiation capacity.

Breast Promoting

Ye et al.,
2012 [38]

Bone marrow
(iliac crest)

Human Percoll gradient
centrifugation,
adherence to plastic

CD105+, CD90+, CD44+, CD29+,
CD166+, HLA-ABC+, CD34−, CD14−,
CD45− and HLA-DR−. Osteogenic
and adipogenic differentiation
capacity

Prostate Promoting

Lee et al., 2013
[39]

Adipose tissue Human Adherence to plastic CD105+, CD90+, CD44+, CD29+,
CD73+, CD34−, CD45− and CD31−

Prostate Promoting

Sun et al.,
2009 [44]

Umbilical cord Human Ficoll density gradient
centrifugation,
adherence to plastic

CD105+, CD90+, CD44+, CD29+,
CD73+, CD34−, CD45− and HLA-DR−.

Breast Suppressive

Sun et al.,
2009 [44]

Adipose tissue
(mammary fat)

Human Adherence to plastic Characterised in a previous study:
CD105+, CD90+, CD29+, CD34−,
CD14−, CD45−, HLA-DR−and CD133−.

Breast Suppressive

Otsu et al.,
2009 [47]

Bone marrow Rat and
mouse

Adherence to plastic CD90+, CD44+, CD29+, CD59+, CD54+,
CD11b−, CD45−

Melanoma Suppressive when
administered at a
3:1 ratio with ECs.

Spaeth et al.,
2009 [61]

Bone marrow Human Adherence to plastic CD105+, CD90+, CD44+, CD146+,
CD140b+, CD166+, CD31−, CD34−

and CD45−.
Osteogenic, adipogenic and
mineralised cell differentiation
capacity

Transition to CAF
following exposure
to ovarian cancer
‘SKOV-3’ cells

Promoting
following
transition to CAF

Mishra et al.,
2008 [70]

Bone marrow Human Ficoll gradient
centrifugation,
adherence to plastic

CD105+, CD90+, CD44+, HLA-ABC+,
Stro1+, CD11b−, CD45− and HLA-DR−.
Osteogenic, adipogenic and
myogenic differentiation capacity

Transition to CAF
following exposure
to breast cancer
‘MDA-MB-231’ cells

Promoting
following
transition to CAF

Shangguan
et al., 2012 [65]

Bone marrow Human Obtained from
IH-supported MSC
Distribution center
in Texas A&M Health
Science Center

CD105+, CD90+, CD44+, CD29+,
CD49c+, CD49f+, CD59+, CD166+,
CD34−, CD36−, CD117− and CD45−.
Osteogenic, adipogenic and
chondrogenic differentiation capacity

TGF-β dependent
transition to CAF
following exposure
to breast cancer
‘MDA-MB-231’ cells

Promoting
following
transition to CAF
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stimulated by either TLR4 or TLR3 and classified them as
MSC1 and MSC2 respectively [58]. MSC1 cells were
found to have an anti-tumour effect while MSC2 cells
promoted tumour growth and metastasis [59]. Given that
increased expression of both TLR3 and TLR4 in breast
tumour epithelium is associated with increased risk of dis-
ease recurrence [60], and taken in the context of their
anti-tumoural and pro-tumoural effects in MSCs [59], it is
clear that targeting TLRs for the treatment of cancer is
complex and its benefits may be dependent on the specific
polarisation of MSCs and immune cells in the tumour
microenvironment, in addition to the TLR expression pat-
terns within the tumour epithelia in each individual
patient.

Cancer associated fibroblasts: origins and characteristics
Cancer associated fibroblasts (CAFs) are a heteroge-
neous population of fibroblast-like cells with a tumour
promoting function. The heterogeneity may be due to
varying cell origins and the molecular constitution of
tumour stroma from which the cell fate is determined.
CAFs have been found to originate from bone marrow
MSCs, fibroblasts and by transdifferentiation of epithe-
lial and endothelial cells [61–63]. The mechanisms by
which the cells differentiate or become ‘activated’ are
largely unknown, however, exposure to TGF-β has been
shown to induce the phenotypic changes regardless of
cell origin [63–66].

MSCs as an origin for CAFs
Evidence to suggest CAFs can be derived from MSCs
was found in in vivo studies whereby genetically tagged
bone marrow derived cells, injected into mice, were
found at the tumour site with myofibroblast morphology
and expressing α smooth muscle actin (α-SMA) and the
α1 chain of type I (pro)collagen [67–69]. A subsequent
study in a murine ovarian carcinoma xenograft model,
found that bone marrow derived MSCs engrafted at the
tumour expressed CAF markers fibroblast activation
protein, fibroblast specific protein 1, α-SMA and tenas-
cin C (TN-C) [61].
Further evidence to support the hypothesis that CAFs

can originate from MSCs comes from in vitro studies
where MSCs are cultured long-term in tumour cell
conditioned medium. In a study by Mishra et al. human
MSCs were cultured for up to 30 days in the breast
cancer cell line (MDA-MB-231) conditioned medium
[70]. The resulting MSCs expressed increased levels of
α-SMA, fibroblast specific protein 1 (FSP-1), SDF-1α
and vimentin and stimulated tumour cell growth in both
in vitro and in vivo models [70]. Long-term culture of
human MSCs for 12–16 days in conditioned medium
taken from ovarian cancer cell line, SKOV-3, induced
the expression of CAF markers in MSCs and elevated

secretion of IL-6, leading to increased tumour cell prolif-
eration [61]. Interestingly, TGF-β may be involved in the
transition as human bone marrow MSCs transduced
with a lentiviral vector which inhibited TGF-β/smad
signalling, expressed a decrease in CAF markers when
conditioned for 10 days in tumour cell conditioned
medium in comparison to naïve MSCs [65]. Furthermore,
treatment of MSCs with the endoplasmic reticulum
chaperone, GRP78, activated TGF-β/smad signalling and
induced the transition to a CAF like phenotype [71].
Taken together, it is clear that TGF-β plays a major role in
the transition from MSC to CAF, however it is unclear
to what degree it affects the secretory profile of the
cells and their functional characteristics. It is also inter-
esting to note that the MSCs used in each of these
studies are positive for the MSC markers CD105, CD90
and CD44, which allows a more robust interpretation
of the findings (see Table 1).
On the other hand, it must be noted that MSCs and

CAFs share many similarities. A study has shown that
CAFs share many of the same surface markers as MSCs
such as CD29, CD44, CD73, CD90, CD106 and CD117,
and have the capacity to differentiate to osteocytes,
chondrocytes and adipocytes, and express vimentin [72].
An interesting suggestion, which is discussed in more
detail in a recent review by Kalluri, describes the idea
that fibroblasts are resting mesenchymal cells that can
be activated to become MSCs in response to certain
stimuli [73]. Nonetheless, CAFs were found to have an
increased proliferative capacity and secrete increased
VEGF, TGF-β, IL-4, IL-10 and tumour necrosis factor-α
(TNF-α) compared to MSCs [72]. This provides credibil-
ity to another proposal by Kalluri that resting fibroblasts
are in fact MSCs that can be stimulated to an activated
state such as what is described as a CAF or a cancer-
associated MSC [73]. It could also be suggested that
CAFs originate from a subpopulation of MSCs, a finding
which could explain some of the shared characteristics.
It was suggested in a review by Augsten that the term
CAFs should be used to describe a heterogeneous popu-
lation of fibroblasts that originate from different sources,
reside in various tumour types but are not assigned a
specific function. This suggestion borrows from previous
literature describing macrophage polarisation where an
F1 subtype would be associated with tumour suppressive
properties and an F2 subtype would describe fibroblasts
with tumour promoting effects [74].

Mesenchymal stem cells and metastasis
MSCs interact with cancer cells at multiple stages of can-
cer progression. At the primary tumour MSCs have been
shown to drive tumour cells toward an invasive, pro-
metastatic state. Human MSCs injected alone into mice
with mammary carcinoma xenografts resulted in a 42%
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occurrence of metastatic lesions, compared with 17% in
the control treated mice [75]. Similarly, human MSCs
injected systemically into mice were found to migrate to
the stroma of primary colon tumours as well as metastatic
liver tumours [76]. Furthermore, co-culture of human
bone marrow MSCs with MDA-MB-231 or MDA-MB-
435 breast cancer cell lines 48 hours preceding injection
resulted in enhanced metastasis in a mouse orthotopic
implantation model, whereas the MSCs had no effect on
metastasis without prior co-culture [77].
Tracking of MSCs using magnetic resonance imaging

in a mouse xenograft model has shown that MSCs were
more likely to home to the lung metastatic site than to
the primary tumour [78]. A study suggests that tumour
cells do not always leave the primary site as single cells
but also as ‘heterotypic tumour fragments’ consisting of
the metastatic cancer cells along with tumour stromal
cells [32]. These clusters of cells were found to migrate
to the metastatic site and promote tumour growth.
Moreover, CAFs were found to migrate from the
primary tumour to the lung metastatic site in mice [32].
Additionally, a study by Kaplan and colleagues using
mouse models found that VEGF receptor (VEGFR1)
expressing bone marrow derived cells migrated to and
formed clusters in pre-metastatic sites before the arrival
of tumour cells. Interestingly, blocking VEGFR1 function
prevented cluster formation and metastasis [79]. These
studies indicate a potential role for bone marrow derived
cells in the creation and possibly the maintenance of a
metastatic niche.

Role in the promotion of EMT
The presence of MSCs in the tumour stroma may stimu-
late EMT of the cancer cells. Research has shown that
direct co-culture of breast or gastric cancer cells with
human bone marrow derived MSCs resulted in the up-
regulation of EMT markers N-cadherin, vimentin, Twist
and Snail and the downregulation of E-cadherin [80, 81].
Correspondingly, it was found that human MSCs pre-
treated with TNF-α and IFN-γ, secreted increased levels
of TGF-β. Hepatocellular carcinoma cells grown in
conditioned medium from the TNF-α and IFN-γ treated
MSCs showed marked changes in molecular markers
and functional characteristics associated with EMT, such
as increased migration and invasion both in vitro and
in vivo [82].

Role in the establishment of distant metastasis
A study by Karnoub and colleagues investigated the
effect of MSCs on breast cancer cell motility and migra-
tion to the site of metastasis [26]. Human bone marrow
derived MSCs were co-injected with the breast cancer
cell line, MDA-MB-231, into mice. The chemokine
CCL5 was secreted by MSCs, which in turn interacted

with its receptor CCR5 on the breast cancer cells, result-
ing in increased metastasis to the lung [26]. Further
strengthening these results, studies were published
demonstrating the secretion of CCL5 by in vitro by
human bone marrow derived MSCs in response to osteo-
sarcoma cells [83] and breast cancer cells [84]. Addition-
ally, it was found that the release of osteopontin (OPN) by
tumour cells induced the production of CCL5 by MSCs,
which in turn promoted CCR5 mediated breast cancer cell
metastasis (see Fig. 1). Furthermore, MSCs isolated from
the site of metastasis (the lung and liver) expressed the
CAF markers α-SMA, SDF-1α, TN-C, MMP-2 and MMP-
9 [84].
OPN is a chemoattractant with adhesive properties

and can facilitate invasion through the binding of integ-
rins, mainly αvβ1, αvβ3, αvβ5, αvβ6, α8β1 and α5β1, on
many cell types [85–88]. Increased OPN levels were
found to be correlated with prostate cancer progression
and an indicator of the presence of distant metastases
[89–92]. OPN deficient mice when injected with B16
melanoma cells developed decreased bone metastasis in
comparison to wild-type mice [93]. OPN facilitates
osteoclastogenesis by mediating osteoclast motility and
anchorage to the bone mineral matrix [94–98]. Changes
in OPN production within the bone marrow could
therefore disrupt bone homeostasis as expression of
OPN in breast cancer has been found to be associated
with osteolytic bone metastasis [99, 100].

MSCs at the bone metastatic site
MSCs are bone marrow resident cells and given the poor
prognosis in patients diagnosed with metastatic bone
cancer, it is a key area in which to explore their role
[101]. MSCs play a crucial supportive role for HSCs and
their interaction with the surrounding microenviron-
ment maintains a balance between bone formation and
resorption. Given the plethora of studies showing the
tumour promoting effect of MSC-tumour cell inter-
action, it is likely that tumour cell infiltration into the
bone marrow will have a considerable impact on bone
marrow homeostasis.
Entry of cancer cells into the bone marrow may be

facilitated by MSCs through adherence of the metastatic
cell to bone marrow ECs [33]. Several studies have found
that the chemoattraction of tumour cells to the bone mar-
row is stimulated by bone marrow stromal cell production
of SDF-1α (see Fig. 1) [33, 102, 103]. Prostate cancer cells
were found to express the receptor CXCR4 and migrate
and invade in response to SDF-1α [104, 105]. Human bone
marrow derived MSCs were found to promote the transmi-
gration of breast cancer cell lines (MCF7 and T47D) across
bone marrow ECs [33]. Tac1 expression in the breast
cancer cell lines was found to play a key role in bone
marrow EC transmigration and the adherence of the

Ridge et al. Molecular Cancer  (2017) 16:31 Page 6 of 10



metastatic cells to MSCs through the regulation of CXCR4
and SDF-1α production in the breast cancer cells [33].
Cells of the bone marrow including HSCs, megakaryo-

cytes, macrophages and myeloid-derived suppressor cells
have been implicated in developing a hospitable metastatic
niche [106]. However, given the plasticity of MSCs and
their role in bone remodelling it seems likely that the
establishment of tumour cells within the bone marrow
would result in cellular cross-talk that would disrupt bone
homeostasis. Bone morphogenic protein-4 (BMP-4) within
the bone marrow has been shown to stimulate the produc-
tion of sonic hedgehog (SHH) in prostate cancer LNCaP
cells which enhanced BMP-responsive reporter signalling
in the mouse stromal cell line, MC3T3-E1, leading to
increased osteoblastic differentiation [107].
An interesting study by Joseph et al. investigated the

interaction between HSCs derived from the bone mar-
row of mice implanted with prostate cancer cell lines
that formed either osteoblastic or osteolytic metastatic
lesions. They found that HSCs derived from the mice
with osteoblastic lesions stimulated osteoblastic differen-
tiation of MSCs through BMP2 signalling, while HSCs
derived from mice with osteolytic lesions enhanced the
differentiation of mixed marrow mononuclear to osteo-
clasts through IL-6 signalling [108]. It is thought provok-
ing research and the field would benefit from a similar
study in which MSCs are isolated from both osteoclastic
and osteoblastic metastatic lesions. A better understanding
of the impact of tumour cell infiltration on the bone mar-
row resident cells could reveal better therapeutic targets.
The other question is whether these effects are lasting, and
if depletion of tumour cells from the metastatic site leaves
behind a dysfunctional, destructive microenvironment.
IL-6 is a pro-inflammatory cytokine that is known to

mediate cell proliferation, cell survival and lymphocyte
differentiation [109]. IL-6 may have an important role in
cross-talk within the tumour associated bone marrow
microenvironment. Production of IL-6 in multiple mye-
loma by bone marrow stromal cells induces tumour cell
adhesion and osteoclastogenesis [110, 111]. IL-6 secretion
in MSCs was found to be stimulated by neuroblastoma
cells within the bone marrow which in turn activated
osteoclasts [112]. IL-6 was also found to act on neuro-
blastoma and multiple myeloma cells within the bone
marrow by increasing cell proliferation and survival
through activation of the signal transducer and activator
of transcription 3 (STAT3) pathway [112, 113].

Conclusions
It is now understood that MSCs interact with and influ-
ence tumour cells at various stages of progression. It is
not clear however, whether the effect is predominantly
tumour promoting or suppressive. Explanations that could
account for the conflicting results include differences in

experimental design, the heterogeneity within the MSC
population or varying responses dependent on the stimuli
(explored more extensively in a review by Klopp et al.
[114]). Nonetheless, there is extensive evidence to suggest
that MSCs can promote tumour growth and drive meta-
static progression. Despite this, MSCs are increasingly
being studied for their potential in a range of different
clinical therapies. It is therefore imperative to understand
how they communicate with tumour cells and within the
tumour stroma. Given the plasticity of MSCs, future re-
search should consider whether they are reprogrammed at
the site of the tumour or if they exert their effects solely
through paracrine signalling and direct cell-cell contact. It
would also be interesting to ascertain whether there are
phenotypic differences in MSCs that are isolated from dif-
ferent tumour types and whether the MSC responds to the
tumour according to its stage of progression.
Cancer therapies classically target tumour cells yet,

what remains is an activated stroma that provides an en-
couraging microenvironment for any surviving tumour
cells. Evidence to support this comes from studies in
breast cancer in which stromal-related gene expression
or gene signatures was predictive of clinical outcome
[115, 116]. Moreover, pre-treatment of MSCs to concen-
trations of cisplatin which were toxic to breast cancer
cells but not MSCs in vitro was found induce changes in
kinase phosphorylation and increased cytokine produc-
tion in the MSCs and co-culture with breast cancer cells
lead to chemoresistance in the tumour cells [117]. It
would therefore be of therapeutic interest to investigate
the contribution of tumour stromal cells to cancer pro-
gression and their activity following cytotoxic treatment.
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