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Abstract

Background: Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance,
and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and
oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side
population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression
of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to
investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s).

Methods: Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like
side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were
employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor
formation capacity in vivo.

Results: We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione
synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium
significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine
and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also
diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading
to down-regulation of the β-catenin pathway.

Conclusion: Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated
mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase
may be a new strategy to eliminate CSCs and overcome drug resistance.
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Background
Despite major progress made in our understanding of
basic cancer biology and new therapeutic targets in the
past decades, the clinical outcomes for certain types of
cancers such as lung, liver, and pancreatic cancers

remain unsatisfactory. Extensive studies have indicated
that cancer stem cells (CSCs) may play a key role in
tumor initiation and disease recurrence [1–5], but find-
ing effective measure to eradicate CSCs still remain as a
major challenge. Recent advancement in high through-
put screening technology has enabled the identification
of salinomycin as a selective toxic agent against cancer
stem cells [6]. Furthermore, the self-renewal properties of
cancer stem cells and the signals from their microenviron-
ment may also be used to preferentially target CSCs.
Indeed, the critical role of certain cytokines, pH, and oxy-
gen in affecting CSCs proliferation and differentiation
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have been evaluated [7, 8]. However, the impact of nutri-
ents in the tumor microenvironment on the CSCs remains
largely unknown.
Cancer cells demand rapid ATP production to main-

tain their active cellular processes, require active biosyn-
thesis of macromolecules to support cell division, and
need a tightly controlled ROS metabolism to maintain
cellular redox balance and cell survival [9]. Glucose and
glutamine are the two major nutrients whose metabol-
ism is often altered in cancer cells. The best character-
ized metabolic shift in tumor cells is the Warburg effect,
which refers to the higher aerobic glycolysis observed in
the majority of cancer cells compared to normal cells
[10]. Notably, recent studies suggest that CSCs seem to
have higher glycolytic activity and lower mitochondria
respiration compared to the bulk of “regular” cancer
cells [11–13]. Glucose in tumor microenvironment in-
duces a reversible increase of stem-like side population
cells [11]. The glucose-driven glycolysis also plays key
roles in maintaining hematopoietic stem cells (HSCs)
and controlling differentiation, and HSCs exhibit high
glycolysis and low oxidative phosphorylation associated
with decreased mitochondrial mass and mutations of
certain mitochondrial gene [14]. Thus, it is not surpris-
ing that glucose in the tumor microenvironment plays
an important role in the regulation of stem cell (29).
Glucose and glutamine metabolisms are interrelated at

multiple levels. Glutamine transport is the rate-limiting
step in the activation of mTOR signaling pathway, and
this latter event induces glucose uptake through upregu-
lation of the glucose transporter Glut1 [15, 16]. Glucose
and glutamine are both precursors of the tricarboxylic
acid (TCA) cycle as well as precursors of the lipids pro-
duction, nucleotides and amino acids synthesis [17].
However, the effect of glutamine on regulation of CSCs
is largely unknown. In this study, we used side popula-
tion (SP) cells as our in vitro model to study the poten-
tial impact of glutamine on stem-like cancer cells.
Glutamine depletion from the culture medium resulted
in a decrease in SP subpopulation in vitro. We also
found that the expression of several key stem cell
associated markers (i.e. Sox2 and ABCG2) were also
down-regulated upon glutamine deprivation by multiple
methods. Moreover, glutamine deprivation led to an in-
crease of reactive oxygen species (ROS), which in turn
negatively regulated β-catenin pathway to decrease the
fraction of SP cells. Finally, we investigated the potential
role of glutamine deprivation and L-asparaginase on
A549 cells tumorigenicity capacity in vivo.

Methods
Chemicals and reagents
Hoechst 33342, verapamil, glutaminase, L-asparaginase,
and 3-Amino-1,2,4-triazole (ATZ), 3-(4,5 dimethylthiazol-

2-yl)-2,5-diphenyl tetrazolium bromide (MTT), hydroethi-
dine, Rhodamine 123 were purchased from Sigma (St
Louis, MO, USA). Rabbit monoclonal anti-Axin2 (D48G4),
rabbit monoclonal anti-Survivin (71G4B7), rabbit poly-
clonal anti-phospho-β-catenin (Ser33/37/Thr41), rabbit
monoclonal anti-phospho-Akt (Ser473) antibodies were
obtained from Cell Signaling Technology (Danvers, MA,
USA). Mouse monoclonal anti-c-Myc (9E10) was pur-
chased from Santa Cruz (Santa Cruz, CA, USA). Rabbit
polyclonal anti-CyclinD1 antibody was obtained from
GeneTex (San Antonio, TX, USA). Mouse monoclonal
anti-β-catenin (C47H1), rabbit monoclonal anti-Sox-2,
rabbit monoclonal anti-ABCG2, and mouse monoclonal
anti-β-actin antibodies were purchased from Abcam
(Cambridge, UK). CM-DCFDA, Lipofetamine RNAiMAX
and Opti-MEM were purchased from Invitrogen Life
Technologies (Carlsbad, CA, USA).

Cells and cell cultures
Human non-small cell lung carcinoma (NSCLC) A549
and pancreatic cancer AsPC-1 cells were obtained from
the American Type Culture Collection (ATCC) (Rockville,
MD, USA) and routinely maintained in RPMI 1640,
supplemented with 10% fetal bovine serum (Invitrogen
Life Technologies). Glioblastoma cancer stem cell lines
GSC11 and GSC23 originally derived from human glio-
blastoma tissues were maintained in DMEM/F-12
(Hyclone) supplemented with B-27 (Invitrogen), 2 mM
glutamine (Mediatech), 20 ng/ml recombinant human epi-
dermal growth factor (EGF; R&D Systems), and 20 ng/ml
basic fibroblast growth factor (bFGF; R&D Systems) as de-
scribed previously [18]. All cell lines were incubated at
37 °C in a humidified atmosphere with 5% CO2.

Measurement of intracellular ATP
Cellular ATP levels were determined using the ATP-based
CellTiter-Glo luminescent Cell Viability kit (Promega,
Madison, USA) according to the manufacturer’s instruc-
tions with the following modifications. Briefly, Cells were
plated in triplicate in 96-well plates to allow for attach-
ment overnight, and then the culture was switched to
glutamine-free medium or L-asparaginase (L-ASP) was
added to the culture for different times to deplete glutam-
ine. The cell samples were then mixed with equal volume
of the single-step reagent provided with the ATP-based
CellTiter-Glo kit and rocked for 2 min followed by incu-
bation at room temperature for 15 min. Then lumines-
cence levels were measured using a luminescent plate
reader (Thermo Fisher Varioskan Flash; Waltham, MA).

Flow cytometry analysis of reactive oxygen species (ROS)
and mitochondrial membrane potential (MMP)
Intracellular ROS (H2O2) contents were measured by in-
cubating cells with 10 μM CM-DCFDA at 37 °C for 1 h
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followed by detection using flow cytometry (Beckman
Coulter). Intracellular superoxide level was measured by
incubating cells with 50 ng/ml Het at 37 °C for 30 min
before detection by flow cytometry. MMP was detected
after incubation of cells with 1 μM rhodamine-123 for
30 min flowed by flow cytometry analysis.

Measurement of cellular glutathione
Cellular glutathione (GSH) concentrations were mea-
sured using the GSH-Glo Assay kit (Promega, Madison,
WI, USA) according to the manufacturer’s protocol with
the following modifications. Briefly, cells were seeded in
96-well plates and incubated with either complete
medium or glutamine-free medium for 24 h, 48 h, or
72 h. The culture medium was then removed and the
cells were lysed with 100 μl reaction buffer provided in
the kit. After incubation for 30 min, 100 μl detection
buffer was added and incubated for another 15 min at
room temperature. GSH contents were measured using
a luminescent plate reader, and were normalized by cell
numbers.

Determination of NADP+/NADPH
NADP+, NADPH, and their ratio were measured using
the NADP/NADPH Quantitation Colorimetric Kit (Bio-
Vision Inc., Milpitas, CA, USA). Briefly, after A549 cells
were cultured with or without glutamine/L-Asparaginase
for 48–72 h, the cells were washed with cold PBS and
then lysed using NADP/NADPH extraction buffer on ice
for 10 min. The cell lysates were spun down and the
supernatants were used for measurement of NADP
+/NADPH using the assay conditions recommended by
the manufacturer (BioVision Inc.).

RNA extraction and quantitative real-time PCR analysis
Total RNA was extracted with TRIZOL (Ambion, Austin,
TX, USA) from A549 cells after cultured in RPMI 1640
with or without glutamine, L-asparaginase or H2O2.
cDNA was generated from equal amount of total RNA
(1 μg) using Prime Script RT reagent kit with DNA Eraser
(Takara Biotechnology, Dalian, Liaoning, China). Specific
primers used for the amplification of indicated genes were
listed in Additional file 1: Table S1 and S2. Real-time PCR
was performed using SYBR Premix Ex Taq II kit (TliR-
Nase H Plus, Takara Biotechnology, Dalian, Liaoning,
China) and the CFX96 real-time system (Bio-Rad Labora-
tories, Hercules, CA, USA). The RT-PCR amplification re-
action program consisted of one cycle of 95 °C/30S and
40 cycles of 95 °C/5S→ 60 °C/30S. β-actin was used as an
internal control for normalization.

Protein extraction and western blot analysis
A modified RIPA buffer (150 mM NaCl, 50 mM Tris,
0.1% SDS, 1% Triton X-100, 0.5% sodium deoxycholate,

1 mM EDTA) with a protease inhibitor cocktail and a
phosphatase inhibitor cocktail (Roche, Indianapolis,
Indiana, USA) was used for protein isolation. Cells were
washed twice with ice-cold PBS and lysed in 100–200 μl
RIPA buffer for 30 min. Cell debris was removed by cen-
trifugation at 12,000 rpm for 15 min at 4 °C. The super-
natants were collected, and protein concentrations were
determined using the BCA Protein Assay Kit (Pierce,
Rockford, IL, USA). An equal quantity of proteins from
each experimental condition were subjected to electro-
phoresis in denaturing 10% SDS-polyacrylamide gel, and
then transferred to a PVDF membrane, which was
probed for p-β-catenin, β-catenin, p-Akt, ABCG2, SOX-
2 and β-actin here using as internal control.

RNA interference assay
Small RNA interference (siRNA) for knockdown of β-
catenin expression in A549 cells was performed using
Lipofetamine RNAiMAX Reagent. Briefly, 2x105 A549
cells per well were plated in six-well plates. After over-
night incubation, the culture medium in each well was
replaced with 2 ml fresh medium containing 250 μl
transfection reagents (containing Opti-MEM, β-catenin
siRNA or scrambled RNA, and Lipofetamine RNAi-
MAX). After incubation for 48 h, the transiently trans-
fected cells were collected and RNA was extracted for
analysis by qRT-PCR.

Side population analysis
Cells were washed with PBS, trypsinized, and re-
suspended in pre-warmed RPMI 1640 medium contain-
ing 2% FBS with or without glutamine at a final density
of 1x106 cells/ml. Cell staining was performed according
to the method described by Goodell et al. [19] with the
following modifications. Briefly, the cells were incubated
with Hoechst 33342 (5 μg/ml) in the presence or absence
of the ABC transporter inhibitor verapamil (50 μM) for
90 min at 37 °C in dark with intermittent shaking. The
cells were then washed and re-suspended in cold PBS.
Single cell suspension was obtained using a 70 μm cell
strainer. Cells were kept at 4 °C for flow cytometry ana-
lysis or sorting on a MoFlo XDP Cell Sorter (Beckman
Coulter).

Colony formation and tumor cell sphere forming assays
A549 cells were seeded in six-well plates at a density of
400 cells per well and cultured at 37 °C for two weeks. At
the end of the incubation, the cells were fixed with 100%
methanol and stained with 0.1% (w/v) Crystal Violet, and
the colonies were counted. Each measurement was
performed in triplicate and the experiments were each
performed at least three times. For neurosphere formation
assay, glioblastoma stem cells GSC11 and GSC23 were
seeded in 6-well plates in a range of 100–1000 cells per
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well, cultured in the indicated medium with or without
glutamine for 2 weeks, and then the cell spheres were ex-
amined under a light microscope (Nikon).

Evaluation of in vivo tumorigenicity
To test the effect of glutamine deprivation on tumor-
initiating capacity, A549 cells were treated under glutam-
ine deprived conditions for 5 days in vitro. The cells were
then harvested and inoculated subcutaneously into the
flanks of athymic nude mice with the indicated cell num-
bers per injection site. The presence or absence of a visible
tumor was evaluated and tumor growth was monitored
every 3 days. The mice were sacrificed by the end of two
months or when the tumors reached a maximum size of
1,000 mm3. Tumor volume was calculated by the formula
0.5 × length × width2. All animal experiments were con-
ducted in accordance with the institutional guidelines and
approved by the Animal Care and Use Committee of Sun
Yat-sen University Cancer Center.

Statistical analysis
Data were analyzed using GraphPad Prism 5 (GraphPad
Software, Inc., La Jolla, CA). Data are presented by error
bars (mean +/− SD) from experiments in triplicate un-
less otherwise noted. A two tailed Student’s t test was
used to determine the statistical significance of differ-
ence between samples.

Results
Glutamine deprivation reduced stem-like SP cells
Our previous study has demonstrated that glucose is an
important regulator to determine the proportion of side
population (SP) in cancer cells through modulating the
activity of Akt pathway [11], suggesting that the nutri-
ents in tumor tissue niche may significantly affect the
stemness of CSCs. Based on this observation, we further
evaluated another important nutrient, glutamine, for its
effect on SP cells. Non-small cell lung cancer A549 cells
were cultured in RPMI medium with or without glutam-
ine (Gln) for various incubation times and the SP frac-
tion was then analyzed. As shown in Fig. 1a and b, the
SP fraction gradually decreased when A549 cells were
cultured in Gln-free medium (from 9.86 to 6.54% in
24 h, 4.4% in 48 h, and 2.65% in 72 h). In contrast, glu-
cose deprivation caused a rapid decrease of SP fraction
from 9.86% to less than 1% within 24 h (Fig. 1a and b).
This significant difference in the time-course of SP
decrease suggests that glucose and glutamine might
have different mechanisms in regulating SP cells. The
impact of glutamine on SP cells was further con-
firmed in the AsPC-1 pancreatic cancer cell line
(Additional file 1: Figure S1).
Based on the above observation that glutamine

deprivation significantly affected the fraction of SP cells,

we reasoned that blocking glutamine metabolism could
also reduce SP cells. For this purpose, a clinical drug L-
asparaginase (L-ASP), which catalyzes the hydrolysis of
asparagine to aspartate and used in the treatment of
acute lymphoblastic leukemia (ALL) in children [20, 21],
was used in this study to enzymatically deplete glutam-
ine by its glutaminase activity [22, 23]. As shown in
Fig. 2, addition of L-ASP into the cell culture medium
caused a concentration- and time-dependent conversion
of glutamine to glutamate, and this resulted in a gradual
decrease of SP subpopulation (Fig. 2). Consistently,
glutaminase also diminished the proportion of SP cells
(Additional file 1: Figure S2). These data together sug-
gest that glutamine depletion by either direct removal
from the medium or enzymatic depletion significantly
diminished the fraction of SP cells.

Impact of glutamine on clonogenic capacity and
expression of stem cell markers
In agreement with the observation that glutamine
deprivation or L-ASP treatment reduced SP fractions,
both the removal of glutamine and incubation with L-
ASP markedly inhibited clonogenic formation in A549
cells (Fig. 3a and b). We also observed that the size of
A549 cells became irregular and had flagella-like morph-
ology under glutamine deprivation for 72 h (Fig. 3c).
The impact of glutamine on the expression of cancer
stem cell markers was further evaluated. As shown in
Fig. 3d, the mRNA expression of Sox-2 and ABCG2, two
representative markers of stem cells [24–26], was signifi-
cantly decreased in when glutamine was depleted.
Western blot analysis of protein expression (Fig. 3e) fur-
ther confirmed the results of qRT-PCR analysis. Sox-2
and ABCG2 expression were also decreased after cells
were incubated with L-ASP, both at the transcriptional
and translational levels (Fig. 3f and g). Since the ABCG2
on the membrane plays a major role in exporting drugs
and the Hoechst dye out of the cells, we quantified the
change of ABCG2 in A549 cells by flow cytometry in the
presence or absence of glutamine or L-asparaginase.
ABCG2 expression on the cell membrane was decreased
in the absence of glutamine or in the presence of L-
asparaginase (Fig. 3h and i). We also tested two glio-
blastoma stem cell lines GSC11 and GSC23 originally
obtained from primary glioblastoma tissues with high
levels of stem cell marker CD133 and can easily form
neuospheres [12, 27], and showed that glutamine
deprivation or L-ASP treatment caused a reduced neuro-
sphere capacity (Additional file 1: Figure S3A and S3B).
To test if the impact of glutamine deprivation on SP

cells could be reversed by replenishment of glutamine,
A549 cells were first cultured in glutamine-free medium
for 48 h to induce a decrease of SP cells. The cells were
then switched to glutamine-containing medium for
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another 48 h, and SP cells were measured. The results
showed that there was a substantial recovery of SP popu-
lation after 48 h in glutamine-replenished medium
(Additional file 1: Figure S4A), accompanied by corre-
sponding changes in the expression of stem cell markers
including ABCG2, ALDH1, SOX2, and CD44 (Additional
file 1: Figure S4B). These data suggest that the effect of
glutamine on stemness was reversible.

Glutamine deprivation increased ROS levels through
attenuation of the GSH antioxidant system
To investigate the mechanism by which glutamine
depletion decreased SP cells, we first tested whether
glutamine deprivation could attenuate ATP production,
and found that ATP level decreased when glutamine was
absent in the culture medium (Additional file 1: Figure
S5A), a result similar to that observed with glucose

depletion (29). However, unlike glucose depletion which
inhibits Akt activation in A549 cells (29), depletion of
glutamine did not cause significant decrease in Akt
phosphorylation at the time when SP cells were de-
crease, except a transient decrease at 24 h for a yet un-
known reason (Additional file 1: Figure S5B) [11]. This
negative result prompted us to further explore other
potential mechanisms. Based on the important role glu-
tamine in glutathione (GSH) synthesis and ROS balance
that affect stemness of CSCs, we postulated that glutam-
ine deprivation could result in a reduced intracellular
GSH content and an increase in ROS accumulation. As
shown in Fig. 4a, the absence of glutamine reduced cel-
lular GSH by nearly 40%. As expected, glutamine
deprivation also induced a time-dependent increase in
intracellular ROS (Fig. 4b and c). However, when we
used the superoxide (O2

−) specific probe hydroethidine

A

B

Fig. 1 Depletion of glutamine reduced SP subpopulation cells. a The human lung cancer A549 cell line was maintained in standard RPMI 1640
medium containing 2000 mg/l glucose and 300 mg/l glutamine. A portion of the cells were switched to glutamine-free RPMI 1640 medium (upper
panels) and another portion of cells was switched to glucose-free RPMI 1640 medium (lower panels). The cells cultured under these different conditions
were analyzed for percentage of SP cells at 24 h, 48 h and 72 h. The result of flow cytometry from one representative experiment is shown. b Relative
quantification of SP fractions under the experiment conditions described in A. Data are means ± SD of 3 independent experiments; *, p < 0.05; **,
p < 0.01; ***, p < 0.001. Glc, glucose; Gln, glutamine; Vera, Verapamil
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(Het), we did not observe any change in O2
− levels under

the same experimental conditions (Fig. 4d), suggesting
that the increase of ROS was unlikely due to increased
O2

− generation in mitochondria. Indeed, the mitochon-
drial membrane integrity was not damaged when ana-
lyzed by flow cytometry using rhodamine-123 (Rho-123)
or nonylacridine orange (NAO) (Additional file 1: Figure
S5C and S5D). Moreover, the expression of mitochon-
drial protein complexes did not change under glutamine
free condition (Additional file 1: Figure S5E). We also
found that NADP+/NADPH ratio increased, consistent
with increased ROS caused by GSH depletion (Fig. 4e).
These data demonstrated that glutamine deprivation
induced glutathione depletion, leading to attenuation
of the antioxidant system and an increase of cellular
ROS. Consistently, sorting of SP and non-SP cells by
flow cytometry revealed that the cellular GSH level
was higher in SP cells (Fig. 4f ), and the expression of
the glutathione synthesis enzyme GSS was higher in
the sorted SP cells (Fig. 4g).
Since previous studies showed that increased ROS

levels could induce stem cell differentiation [28–31], we

postulated that the effect of glutamine on SP cells could
be mediated by change in ROS. Indeed, incubation of
A549 cells with 50 μM of hydrogen peroxide (H2O2)

decreased the proportion of SP cells (Fig. 5a), associ-
ated with a reduction in expression of stem cell
markers ALDH-1 and Sox-2 (Fig. 5b). The H2O2-
treated cells formed pseudopodia–like morphology
(Additional file 1: Figure S6), similar to that observed
under glutamine depletion condition (Fig. 3c). Consist-
ently, inhibition of catalase, a key antioxidant enzyme
that catalyze the conversion of H2O2 into water and
oxygen [32], by aminotriazole (ATZ) caused a signifi-
cant decrease in SOX-2 and ABCG2 protein levels,
which could be reversed by the antioxidant N-acetyl-L-
cysteine (NAC) (Fig. 5c). As expected, ATZ also dimin-
ished the percentage of SP cells (Fig. 5d). Interestingly,
N-acetyl-L-cysteine (NAC) did not reverse the decrease
of side population cells in absence of glutamine in the
medium (Fig. 5e), likely due to the inability of cells to
use cysteine from NAC for synthesis of glutathione
without glutamine (glutathione synthesis requires cyst-
eine, glycine, and glutamine).
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Glutamine regulated the proportion of SP cells through
ROS/beta-catenin pathway
Considering that Wnt/β-catenin pathway is involved in the
maintenance and radiation resistance of cancer stem cells
[33, 34] and that ROS could suppress β-catenin pathway

through inducing its degradation [35–38], we investigated
whether the deprivation of glutamine could exert its effect
on SP cells through inhibiting β-catenin pathway. Western
blot analysis revealed that depletion of glutamine induced
a significant increase in the phosphorylation of beta-
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glutamine (h) or incubated without or with 1 U/ml L-Asparaginase (i) for the indicated time, and cells were collected and incubated with anti-ABCG2
antibody, detection of membrane protein ABCG2 was measured by flow cytometry analysis. Each Bar represents the mean ± SD of the relative
fluorescence intensity from 3 independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001; Gln, glutamine; L-ASP, L-Asparaginase
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catenin, associated with a decrease of SOX-2 (Fig. 6a).
Similar results were obtained when the cells were incu-
bated with H2O2 (Fig. 6b), suggesting that glutamine
deprivation and H2O2 had a similar effect on β-catenin.
Consistently, analysis of the β-catenin-regulated genes
such as Survivin and Axin2 showed both target molecules

were down-regulated at mRNA and protein levels when
cells were cultured without glutamine (Additional file 1:
Figure S7). However, other β-catenin-regulated molecules
(cyclin D1, C-Myc, BCL-2) did not show consistent de-
grease after glutamine depletion, suggesting that they
might also be regulated by other mechanisms.
To further test the role of β-catenin in regulating stem

cells, we used siRNA to suppress the expression of beta-
catenin, and evaluated its impact on stemness. As shown
in Fig. 6c and d, siRNA effectively suppressed the ex-
pression of β-catenin, leading to a significant decrease of
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ABCG2 expression. These data together suggested that
glutamine regulated the proportion of stem-like side
population cells might be at least in part through ROS-
mediated β-catenin phosphorylation, which leads to β-
catenin protein degradation by proteasome [38].

Effect of glutamine on the ability of cancer cells to form
tumor in vivo
Based on the observations that removal of glutamine or
L-ASP incubation could diminish the fraction of SP cells
in vitro, we further tested their effect on the ability of
A549 cells to form tumor in vivo. As shown in Fig. 7a,
A549 cells were first cultured in glutamine-free medium
or pre-treated with L-ASP for 5 days, a period of time
that is long enough to allow the SP fraction to decrease
to less than 1%, as determined by a time-course experi-
ment in which A549 cells were cultured in glutamine-
free medium for various times leading to a gradual
decrease in SP cells (Additional file 1: Figure S8). The
detached dead cells were washed out, and equal num-
bers of viable cells were inoculated subcutaneously into
the flanks of nude mice. Mice in the control and experi-
mental groups (including Gln-free and L-ASP-treated
groups) were observed for tumor formation for about
2 months without further treatment. All mice inoculated
with 5.0 × 104 control cells developed tumors, while only

1 tumor was observed in the Gln-free group (tumor
incidence: 8.3%), and no tumor was found in the L-ASP-
treated group (Fig. 7b). When the inoculated cell
number was further reduced to 1.0 × 104, the tumor inci-
dence in gln-free or L-ASP-treated group was reduced
to 0 while in control group was still 100% (Fig. 7b).
Tumor growth was retarded in both Gln-free and L-
ASP-treated groups (Fig. 7c). These data demonstrated
that glutamine deprivation or L-ASP treatment of A549
cells could severely impair their tumorigenicity in vivo.

Discussion
Recent studies suggest that the microenvironment in
the stem cell niches plays a major role in regulation
of stemness, and promotes the long-term survival and
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self-renew of CSCs [7, 39–42]. Among the nutrients
in the tumor microenvironment, glutamine is an im-
portant amino acid on which many cancer cells rely
for survival and proliferation. In fact, addiction to
glutamine is often observed in cancer cells, which use
this amino acid as an energy source, a metabolic
intermediate for synthesis of other biomolecules, and
a precursor for synthesis of glutathione to maintain
redox balance [17, 43–45]. Although the reasons for
cancer cell dependency on glutamine are not entirely
clear, the high demand of energy (ATP) and metabolic
intermediates for active cell growth and the increased
need for glutathione to counteract ROS stress under
oncogenic signals are among the possible explanations
for glutamine addiction. Wang et al. revealed that
ASCT2 is important for melanoma and inhibition of
this glutamine transporter could suppress cell prolifera-
tion [46]. In this study, we discovered another
important role of glutamine in maintaining stem-like
cancer cells, using side population in lung cancer as an
experimental model system.
Our study showed that glutamine deprivation induced a

significant decrease in SP cells associated with a down
regulation of ABCG2 and Sox-2. Interestingly, the rate of
decrease in SP cells induced by glutamine depletion was
much slower than that induced by glucose deprivation,
suggesting that these two major nutrients seem to affect
cancer stem cells by different mechanisms. In fact, it has
been shown that glucose affects CSCs through a mechan-
ism involving Akt-mediated regulation of ABCG2 expres-
sion (29), whereas the current study showed that the Akt
activation status seemed not associated with the changes
in SP cells induced by glutamine (Additional file 1: Figure
S4B). The results of our study suggest that a mechanism
by which glutamine affects SP cells may be through ROS-
mediated activation of the β-catenin pathway, which regu-
lates the expression of certain stem cell-related genes [47].
Recent studies suggest that CSCs seem to have higher
glycolytic activity and may be more dependent on glucose
to generate ATP compared to the bulk of general cancer
cells [11–13]. Thus, glucose deprivation could cause a
severe energy deficiency in CSCs, leading to their rapid
decrease. In contrast, a major role of glutamine in CSCs is
to function as a metabolic precursor for the synthesis of
glutathione to maintain redox balance and keep the intra-
cellular ROS at a relative low level. Thus, a depletion of
glutamine would cause an increase of ROS, which tend to
induce cell differentiation and eventually lead to a gradual
decrease in CSC population. These different roles of
glucose and glutamine in energy metabolism and redox
homeostasis may explain their different dynamics in
impacting CSCs.
In our study, glutamine deprivation caused an increase

in β-catenin phosphorylation, leading to its inactivation

and a decreased expression of its down-stream targets
survivin and Axin2. These results suggest that the β-
catenin pathway might play an important role in medi-
ating the down-regulation of SP cells induced by
glutamine depletion, which led to an increase in ROS.
It is known that ROS negatively regulates β-catenin
[36]. Interestingly, a previous study showed that block-
ing glutamine metabolism could inhibit cancer metasta-
sis [48], which is a property of cancer stem cells.
Consistently, we found that glutamine deprivation
could induce a decrease of MMP7 (data not shown), a
marker of cancer metastasis and also a downstream
target of β-catenin.
Cancer stem cells in general are slow-cycling or quies-

cent cells that retain BrdU-labeling over a long period
due to slow division [49, 50], which render them less
sensitive to many chemotherapeutic agents that target
fast-proliferating cells. A low level of intracellular ROS
seems critical to maintain the quiescent status of cancer
cells [51]. To maintain a low ROS level, CSCs require
high capacity of antioxidants to counteract ROS gener-
ated during active cellular metabolism. Indeed, two im-
portant transcription factors, FoxO and P53, have been
shown to play a significant role in regulation of cellular
ROS, and both are considered to be important molecules
for the maintenance of stem cells [52, 53]. The reduced
form of glutathione (GSH) is a highly abundant antioxi-
dant in the cells, and plays an important role in keeping
redox balance and promoting cell viability and drug re-
sistance. In fact, cancer cells with positive CD44, which
interact with the cysteine transporter xCT and promote
GSH synthesis [54], exhibit grow advantage and resistant
to certain therapy [55, 56].
The high ability of CSCs to utilize glutamine for

GSH synthesis leading to increased cell viability and
drug resistance imposes a significant challenge in
clinical treatment of cancer. However, our study sug-
gests that the addiction of CSCs to glutamine metab-
olism could also provide a potential therapeutic target
for elimination of CSCs. Furthermore, glutamine is
also important to support cancer cells viability and
growth through the KRas-regulated metabolic pathway
[57]. As such, it seems possible to target glutamine
metabolism either by enzymatic elimination of glu-
tamine in the tumor microenvironment using L-ASP
or by inhibition of intracellular conversion of glutam-
ine to glutamate using glutaminase (GLS) inhibitors
such BPTES and compound 968, as illustrated in
Fig. 8. It is worth noting that although direct removal
of glutamine from the cell culture medium is a
straightforward approach to evaluate the role of glu-
tamine in supporting CSCs in experimental system, it
is difficult to deprive glutamine in vivo for thera-
peutic purpose. However, it may be possible to use
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enzymes such as glutaminase and L-asparaginase to
remove glutamine in vivo to impact cancer stem cells.
Since L-ASP is a clinical drug currently used in treat-
ment of ALL largely due to its ability to deplete as-
paragine and thus suppresses ALL cell proliferation
[58], it would be feasible to test the possibility to use
L-ASP to eliminate CSCs in a clinical setting. Due to
the plasticity of cancer stem cells and possible rever-
sion of downstream cancer cells to stem stage, it may
be necessary to combine L-ASP with other anticancer
agents to increase the chance to eliminate the entire
cancer cell population and achieve better therapeutic
outcome.

Conclusions
Stem–like side population cells are more addicted to glu-
tamine. Deprivation of glutamine can decrease the frac-
tion of SP cells and stem cell markers (SOX-2 and
ABCG2). Glutamine deprivation increases cellular ROS
through attenuating glutathione synthesis, while increased
ROS suppresses β-catenin pathway through inducing its
phosphorylation and degradation. Tumor formation cap-
acity in vivo was weakened through blocking glutamine
utility by L-asparaginase.
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