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Abstract

Background: The epigenetic regulation of immune response has been demonstrated in recent studies.
Nonetheless, potential roles of RNA N6-methyladenosine (m6A) modification in tumor microenvironment (TME) cell
infiltration remain unknown.

Methods: We comprehensively evaluated the m6A modification patterns of 1938 gastric cancer samples based on
21 m6A regulators, and systematically correlated these modification patterns with TME cell-infiltrating characteristics.
The m6Ascore was constructed to quantify m6A modification patterns of individual tumors using principal
component analysis algorithms.

Results: Three distinct m6A modification patterns were determined. The TME cell-infiltrating characteristics under
these three patterns were highly consistent with the three immune phenotypes of tumors including immune-
excluded, immune-inflamed and immune-desert phenotypes. We demonstrated the evaluation of m6A modification
patterns within individual tumors could predict stages of tumor inflammation, subtypes, TME stromal activity,
genetic variation, and patient prognosis. Low m6Ascore, characterized by increased mutation burden and activation
of immunity, indicated an inflamed TME phenotype, with 69.4% 5-year survival. Activation of stroma and lack of
effective immune infiltration were observed in the high m6Ascore subtype, indicating a non-inflamed and immune-
exclusion TME phenotype, with poorer survival. Low m6Ascore was also linked to increased neoantigen load and
enhanced response to anti-PD-1/L1 immunotherapy. Two immunotherapy cohorts confirmed patients with lower
m6Ascore demonstrated significant therapeutic advantages and clinical benefits.

Conclusions: This work revealed the m6A modification played a nonnegligible role in formation of TME diversity
and complexity. Evaluating the m6A modification pattern of individual tumor will contribute to enhancing our
cognition of TME infiltration characterization and guiding more effective immunotherapy strategies.
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Introduction
In all living organisms, as the third layer of epigenetics,
more than 150 RNA modifications including 5-
methylcytosine (m5C), N6-methyladenosine (m6A) and
N1-methyladenosine (m1A) have been identified [1, 2].
Among these modifications, m6A RNA methylation,
which are widely found in the mRNA, lncRNA as well as
miRNA, is recognized as the most prominent and abun-
dant form of internal modifications in eukaryotic cells,
of whose abundance account for 0.1–0.4% total adeno-
sine residues [3–5]. Similar to the modification of DNA
and protein, m6A modification is a kind of dynamic re-
versible process in mammalian cells, which is regulated
by methyltransferases, demethylases and binding pro-
teins, also known as “writers”, “erasers” and “readers”
[6]. The formation process of m6A methylation is cata-
lyzed by methyltransferases consisting of RBM15,
ZC3H13, METTL3, METTL14, WTAP and KIAA1429,
while the removal process is mediated by demethylases in-
cluding FTO and ALKBH5. In addition, a group of specific
RNA-binding proteins composed of YTHDF1/2/3,
YTHDC1/2, HNRNPA2B1, LRPPRC, FMR1 and so on
can recognize m6A motif, thus affecting m6A functions [7,
8]. The in-depth understanding of these regulators would
help reveal the role and mechanism of m6A modification
in post-transcriptional regulation. It has been reported
that the m6A regulators play a crucial role in a variety of
biological functions in vivo [9–11]. Increasing evidence
demonstrated that dysregulated expression and genetic
changes of m6A regulators were correlated with the disor-
ders of multiple biological process including dysregulate
cell death and proliferation, developmental defects, tumor
malignant progression, impaired self-renewal capacity,
and immunomodulatory abnormality [12–14].
Immunotherapy represented by immunological check-

point blockade (ICB, PD-1/L1 and CTLA-4) has demon-
strated astounding clinical efficacy in a small percentage
of patients with durable responses. Unfortunately, the
majority of patients experienced minimal or no clinical
benefit, far from a met clinical need [15]. Traditionally,
the tumor progression has been considered as a multi-
step process that only involves the genetic and epigen-
etic variation in tumor cells. However, numerous studies
have shown that the microenvironment in which tumor
cells depend for growth and survival also play a crucial
role in the tumor progression. The tumor part was com-
posed of a complex tumor microenvironment (TME)
that not only contained cancer cells but also stromal
cells such as resident fibroblasts (cancer associated fibro-
blast; CAF) and macrophages, and distant recruited cells
such as infiltrating immune cells (myeloid cells and lym-
phocytes), bone marrow-derived cells (BMDCs) such as
endothelial progenitor and hematopoietic progenitor
cells, secreted factors such as cytokines, chemokines,

growth factors, and new blood vessels. Of these, five dis-
tinct myeloid populations including tumor-associated
macrophages (TAM), tumor-associated neutrophils
(TANs), dendritic cells, myeloid-derived suppressor cells
(MDSCs) and Tie2-expressing monocytes comprised the
tumor-associated myeloid cells (TAMCs) [16]. Cancers
cells elicited multiple biological behavior changes
through direct and indirect interactions with other TME
components such as inducing proliferation and angio-
genesis, inhibiting apoptosis, avoiding hypoxia as well as
inducing immune tolerance. As the understanding of the
diversity and complexity of tumor microenvironment
has deepened, emerging evidence reveals its critical role
in the tumor progression, immune escape, and its effect
on response to immunotherapy. Predicting the response
to ICB based on the characterization of TME cell infil-
tration is a key procedure on increasing the success of
existing ICBs and exploiting novel immunotherapeutic
strategies [17, 18]. Therefore, by comprehensively pars-
ing the TME landscape heterogeneity and complexity,
different tumor immune phenotypes are likely to be
identified, and the abilities of guiding and predicting im-
munotherapeutic responsiveness would also improve.
Additionally, the promising biomarkers could be re-
vealed, which will prove highly effective in recognizing
patients’ response to immunotherapy and will benefit
the search for new therapeutic targets [19, 20].
Recently, several studies have revealed the special cor-

relation between TME infiltrating immune cells and
m6A modification, which can’t be explained via RNA
degradation mechanism. Dali et al. reported that binding
of YTHDF1 to the transcripts encoding lysosomal prote-
ases modified by m6A methylation improved the transla-
tional efficiency of lysosomal cathepsins in dendritic
cells (DCs), while suppression of cathepsins in DC sig-
nificantly strengthened its ability to cross-present tumor
antigens, which in turn enhanced tumor infiltrating
CD8+ T cell antitumor response. And YTHDF1 inhib-
ition also improved the therapeutic efficacy of anti-PD-
L1 blockade [21]. The study of Huamin et al. revealed
that METTL3-mediated m6A modification promoted the
activation and maturation of DCs. Declining expression
of co-stimulatory molecules CD80 and CD40 resulted by
METTL3 specific depletion reduced the ability of stimu-
lating T cell activation. And down-regulation of Tirap
inhibited the transmission of the TLR4/NF-κB signaling
pathway and decreased the secretion of pro-inflammatory
cytokines [22]. In addition, some studies have focused on
the intrinsic oncogenic pathways induced by dysregulated
expression and genomic variation of m6A regulators. For
example, Qiang et al. found that METTL3 overexpression
promote gastric cancer (GC) malignant progression and
liver metastasis through angiogenesis and glycolysis path-
way [23].
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However, the above studies have necessarily been con-
fined to only one or two m6A regulators and cell types
owing to technical limitations, while the antitumor effect
is characterized by numerous tumor suppressor factors
that interact in a highly coordinated manner. Therefore,
comprehensive recognizing the TME cell infiltration
characterizations mediated by multiple m6A regulators
will contribute to enhancing our understanding of TME
immune regulation. In this study, we integrated the gen-
omic information of 1938 gastric cancer samples to
comprehensively evaluate the m6A modification pat-
terns, and correlated the m6A modification pattern with
the TME cell-infiltrating characteristics. We revealed
three distinct m6A modification patterns, and surpris-
ingly found that the TME characteristics under these
three patterns were highly consistent with the immune-
excluded phenotype, immune-inflamed phenotype and
immune-desert phenotype, respectively, suggesting the
m6A modification played a nonnegligible role in shaping
individual tumor microenvironment characterizations.
For that, we established a set of scoring system to quan-
tify the m6A modification pattern in individual patients.

Methods
Gastric cancer dataset source and preprocessing
The workflow of our study was shown in Figure S1A.
Public gene-expression data and full clinical annotation
were searched in Gene-Expression Omnibus (GEO) and
the Cancer Genome Atlas (TCGA) database. Patients
without survival information were removed from further
evaluation. In total, 7 eligible GC cohorts (GSE15459,
GSE34942, GSE57303, GSE62254/ACRG, GSE84437,
GSE26253 and TCGA-STAD (The Cancer Genome
Atlas-Stomach Adenocarcinoma)) were gathered in this
study for further analysis. For microarray data from
Affymetrix®, we downloaded the raw “CEL” files and
adopted a robust multiarray averaging method with the
affy and simpleaffy packages to perform background ad-
justment and quantile normalization. For microarray
data from other platforms, the normalized matrix files
were directly downloaded. As to datasets in TCGA,
RNA sequencing data (FPKM value) of gene expression
were downloaded from the Genomic Data Commons
(GDC, https://portal.gdc.cancer.gov/) using the R pack-
age TCGAbiolinks [24], which was specifically developed
for integrative analysis with GDC data [24]. Then FPKM
values were transformed into transcripts per kilobase
million (TPM) values. Batch effects from non-biological
technical biases were corrected using the “ComBat” algo-
rithm of sva package. The baseline information of all eli-
gible GC datasets was summarized in Table S1. The
somatic mutation data was acquired from TCGA data-
base. The GSE62717 dataset from ACRG cohort was
downloaded for Copy Number Variation (CNV) analysis.

Data were analyzed with the R (version 3.6.1) and R Bio-
conductor packages.

Unsupervised clustering for 21 m6A regulators
Owing to the few m6A regulators detected by Illumina
HumanRef-8 WG-DASL v3.0 platform, we did not in-
clude GSE26253 cohort for clustering analysis. A total of
21 regulators were extracted from five integrated GEO
datasets for identifying different m6A modification pat-
terns mediated by m6A regulators. These 21 m6A regula-
tors included 8 writers (METTL3, METTL14, RBM15,
RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13), 2
erasers (ALKBH5, FTO) and 11 readers (YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1,
HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1).
Unsupervised clustering analysis was applied to identify
distinct m6A modification patterns based on the expres-
sion of 21 m6A regulators and classify patients for fur-
ther analysis. The number of clusters and their stability
were determined by the consensus clustering algorithm
[25]. We used the ConsensuClusterPlus package to per-
form the above steps and 1000 times repetitions were
conducted for guaranteeing the stability of classification
[26].

Gene set variation analysis (GSVA) and functional
annotation
To investigate the difference on biological process be-
tween m6A modification patterns, we performed GSVA
enrichment analysis using “GSVA” R packages. GSVA,
in a non-parametric and unsupervised method, is com-
monly employed for estimating the variation in pathway
and biological process activity in the samples of an ex-
pression dataset [27]. The gene sets of “c2.cp.kegg.v6.2.-
symbols” were downloaded from MSigDB database for
running GSVA analysis. Adjusted P with value less than
0.05 was considered as statistically significance. The
clusterProfiler R package was used to perform functional
annotation for m6A-related genes, with the cutoff value
of FDR < 0.05.

Estimation of TME cell infiltration
We used the ssGSEA (single-sample gene-set enrich-
ment analysis) algorithm to quantify the relative abun-
dance of each cell infiltration in the GC TME. The gene
set for marking each TME infiltration immune cell type
was obtained from the study of Charoentong, which
stored various human immune cell subtypes including
activated CD8 T cell, activated dendritic cell, macro-
phage, natural killer T cell, regulatory T cell and so on
(Table S2) [28, 29]. The enrichment scores calculated by
ssGSEA analysis were utilized to represent the relative
abundance of each TME infiltrating cell in each sample.
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Identification of differentially expressed genes (DEGs)
between m6A distinct phenotypes
To identify m6A-related genes, we classified patients into
three distinct m6A modification patterns based on the
expression of 21 m6A regulators. The empirical Bayesian
approach of limma R package was applied to determine
DEGs between different modification patterns [30]. The
significance criteria for determining DEGs was set as
adjusted P value < 0.001.

Generation of m6A gene signature
To quantify the m6A modification patterns of individual
tumor, we constructed a set of scoring system to evalu-
ate the m6A modification pattern of individual patients
with gastric cancer—the m6A gene signature, and we
termed as m6Ascore. The procedures for establishment
of m6A gene signature were as follows:
The DEGs identified from different m6Aclusters were

firstly normalized among all ACRG samples and the
overlap genes were extracted. The patients were classi-
fied into several groups for deeper analysis by adopting
unsupervised clustering method for analyzing overlap
DEGs. The consensus clustering algorithm was utilized
for defining the number of gene clusters as well as their
stability. Then, we performed the prognostic analysis for
each gene in the signature using univariate Cox regres-
sion model. The genes with the significant prognosis
were extracted for further analysis. We then conducted
principal component analysis (PCA) to construct m6A
relevant gene signature. Both principal component 1 and
2 were selected to act as signature scores. This method
had advantage of focusing the score on the set with the
largest block of well correlated (or anticorrelated) genes
in the set, while down-weighting contributions from
genes that do not track with other set members. We
then define the m6Ascore using a method similar to
GGI [31, 32]:

m6Ascore ¼
X

PC1i þ PC2ið Þ

where i is the expression of m6A phenotype-related
genes.

Correlation between m6A gene signature and other
related biological processes
Mariathasan et al. constructed a set of gene sets that
stored genes associated with some biological processes,
including (1) immune-checkpoint; (2) antigen processing
machinery; (3) CD8 T-effector signature; (4) epithelial-
mesenchymal transition (EMT) markers including
EMT1, EMT2 and EMT3; (5) Angiogenesis signature;
(7) pan-fibroblast TGFb response signature (Pan-F-
TBRS); (8) WNT targets; (9) DNA damage repair; (10)
mismatch repair; (11) Nucleotide excision repair; (12)

DNA replication; (13) Antigen processing and presenta-
tion [33–35]. We them performed a correlation analysis
to further reveal the association between m6A gene
signature and some related biological pathways.

Collection of immune-checkpoint blockade genomic and
clinical information
We performed a systematical search for the immune
checkpoint blockade gene expression profiles, which
could be publicly obtained and reported with complete
clinical information. Two immunotherapeutic cohorts
were finally included in our study: advanced urothelial
cancer with intervention of atezolizumab, an anti-PD-L1
antibody (IMvigor210 cohort) [33], and metastatic mel-
anoma treated with pembrolizumab, an anti-PD-1 anti-
body (GSE78220 cohort downloaded from GEO) [36].
For IMvigor210 cohort, based on the Creative Commons
3.0 License, the complete expression data and de-
tailed clinical annotations could be obtained from
http://research-pub.Gene.com/imvigor210corebiologies. The
raw count data were normalized by the DEseq2 R package
and then the count value was transformed into the
TPM value. For GSE78220 cohort, after standardization
using limma package, the FPKM data of gene expression
profiles was also converted to the more comparable TPM
value among samples.

Statistical analysis
Correlations coefficients between the TME infiltrating
immune cells and expression of m6A regulators were
computed by Spearman and distance correlation ana-
lyses. One-way ANOVA and Kruskal-Wallis tests were
used to conduct difference comparisons of three or more
groups [37]. On the basis of the correlation between
m6Ascore and patients’ survival, the cut-off point of
each dataset subgroup was determined using the survmi-
ner R package. The “surv-cutpoint” function, which re-
peatedly tested all potential cut points in order for
finding the maximum rank statistic, was applied to
dichotomize m6Ascore, and then patients were divided
into high and low m6Ascore groups based on the max-
imally selected log-rank statistics to decrease the batch
effect of calculation. The survival curves for the prog-
nostic analysis were generated via the Kaplan-Meier
method and log-rank tests were utilized to identify
significance of differences. We adopted a univariate Cox
regression model to calculate the hazard ratios (HR) for
m6A regulators and m6A phenotype-related genes. The
independent prognostic factors were ascertained through
a multivariable Cox regression model. Patients with
detailed clinical data were eligible for final multivariate
prognostic analysis. The forestplot R package was
employed to visualize the results of multivariate prog-
nostic analysis for m6Ascore in ACRG cohort and
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TCGA-STAD cohort. The specificity and sensitivity of
m6Ascore were assessed through receiver operating
characteristic (ROC) curve, and the area under the curve
(AUC) were quantified using pROC R package. The
waterfall function of maftools package was used to
present the mutation landscape in patients with high
and low m6Ascore subtype in TCGA-STAD cohort. The
R package of RCircos was adopted to plot the copy num-
ber variation landscape of 21 m6A regulators in 23 pairs
of chromosomes [38]. All statistical P value were two-
side, with p < 0.05 as statistically significance. All data
processing was done in R 3.6.1 software.

Results
Landscape of genetic variation of m6A regulators in
gastric cancer
A total of 21 m6A regulators including 8 writers, 2
erasers and 11 readers were finally identified in this
study. Figure 1a summarized the dynamic reversible
process of m6A RNA methylation mediated by regula-
tors as well as their potential biological functions for
RNA. We first summarized the incidence of copy num-
ber variations and somatic mutations of 21 m6A regula-
tors in GC. Among 433 samples, 101 experienced
mutations of m6A regulators, with frequency 23.33%. It
was found that the ZC3H13 exhibited the highest muta-
tion frequency followed by KIAA1429, while both
demethylases (FTO and ALKBH5) as well as METTL3
did not show any mutations in GC samples (Fig. 1b).
Further analyses revealed a significant mutation co-
occurrence relationship between ELAVL1 and
KIAA1429, YTHDF1 and ZC3H13, along with RBM15
and YTHDC1 (Figure S1B). The investigation of CNV
alteration frequency showed a prevalent CNV alteration
in 21 regulators and most were focused on the amplifi-
cation in copy number, while ELAVL1, YTHDF2 and
FMR1 had a widespread frequency of CNV deletion
(Fig. 1c). The location of CNV alteration of m6A regula-
tors on chromosomes was shown in Fig. 1d. Based on
the expression of these 21 m6A regulators, we could
completely distinguished GC samples from normal sam-
ples (Fig. 1e). To ascertain whether the above genetic
variations influenced the expression of m6A regulators
in GC patients, we investigated the mRNA expression
levels of regulators between normal and GC samples,
and found that the alterations of CNV could be the
prominent factors resulting in perturbations on the m6A
regulators expression. Compared to normal gastric
tissues, m6A regulators with amplificated CNV demon-
strated markedly higher expression in GC tissues (e.g.
CBLL1 and FTO), and vice versa (e.g. ELAVL1 and
YTHDF2) (Fig. 1c and f). The above analyses presented
the highly heterogeneity of genetic and expressional al-
teration landscape in m6A regulators between normal

and GC samples, indicating that the expression imbal-
ance of m6A regulators played a crucial role in the GC
occurrence and progression.

m6A methylation modification patterns mediated by 21
regulators
Five GEO datasets with available OS data and clinical
information (GSE15459, GSE34942, GSE57303, GSE62254/
ACRG and GSE84437, Table S1) were enrolled into one
meta-cohort. A univariate Cox regression model revealed
the prognostic values of 21 m6A regulators in patients with
gastric cancer (Figure S1C). The comprehensive landscape
of m6A regulator interactions, regulator connection and
their prognostic significance for GC patients was depicted
with the m6A regulator network (Fig. 2a and Table S3). We
found that not only the m6A regulators in the same
functional category presented a remarkably correlation in
expression, but also a significant correlation was shown
among writers, erasers, and readers. We also demonstrated
that whether tumors with a high writer gene expression ex-
hibits a low eraser gene expression actually depended on
the different writer and eraser genes (Figure S2A-S2H). It
was found that tumors with a high expression of writer
genes (WATP and RBM15) showed a low expression of
eraser gene FTO, while the high expression of WATP and
RBM15 did not affect the expression of another eraser gene
ALKBH5 (Figure S2A-S2B). Tumors with a high expression
of writer gene METTL14, METTL3, KIAA1429 and
ZC3H13 showed a high expression of eraser gene FTO, and
METTL14, METTL3 and ZC3H13 also did not interfere
with ALKBH5 expression, while KIAA1429 shared a com-
mon trend in gene expression with ALKBH5. In addition,
the change of RBM15B expression did not affect the ex-
pression of these two eraser genes (Figure S2C-S2H). Con-
sidering the relatively higher mutation frequency of writer
gene ZC3H13, we analyzed the difference in expression of
eraser genes between ZC3H13-mutant and wild types. Of
these, ALKBH5 was significantly up-regulated in ZC3H13-
mutant tumors compared to wild-type tumors, while FTO
was significantly down-regulated (Figure S2I).
The above results indicated that cross-talk among the

regulators of writers, readers, and erasers may play crit-
ical roles in the formation of different m6A modification
patterns and TME cell-infiltrating characterization
between individual tumors.
The R package of ConsensusClusterPlus was used to

classify patients with qualitatively different m6A modifi-
cation patterns based on the expression of 21 m6A
regulators, and three distinct modification patterns were
eventually identified using unsupervised clustering, in-
cluding 389 cases in pattern A, 348 cases in pattern B
and 322 cases in pattern C. We termed these patterns as
m6Acluster A-C, respectively (Figure S2J and Table S4).
Prognostic analysis for the three main m6A modification
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Fig. 1 (See legend on next page.)
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subtypes revealed the particularly prominent survival ad-
vantage in m6Acluster-B modification pattern (Fig. 2b).

TME cell infiltration characteristics in distinct m6A
modification patterns
To explore the biological behaviors among these distinct
m6A modification patterns, we performed GSVA
enrichment analysis. As shown in Fig. 2c and Table S5,
m6Acluster-A was markedly enriched in stromal and
carcinogenic activation pathways such as ECM receptor
interaction, TGF beta signaling pathway, cell adhesion
and MAPK signaling pathways. m6Acluster-B presented
enrichment pathways associated with immune fully acti-
vation including the activation of chemokine signaling
pathway, cytokine-cytokine receptor interaction, T cell
receptor signaling pathway and Toll like receptor signal-
ing pathways (Fig. 2c). While m6Acluster-C was promin-
ently related to immune suppression biological process
(Fig. 2d). To our surprise, subsequent analyses of TME
cell infiltration indicated m6Acluster-A was remarkably
rich in innate immune cell infiltration including natural
killer cell, macrophage, eosinophil, mast cell, MDSC,
plasmacytoid dendritic cell (Fig. 3a and Table S4). How-
ever, patients with this m6A modification pattern did
not show a matching survival advantage (Fig. 2b). Pre-
vious studies demonstrated that tumors with immune-
excluded phenotype also showed the presence of
abundant immune cells, while these immune cells were
retained in the stroma surrounding tumor cell nests ra-
ther than penetrate their parenchyma. The activation of
stroma in TME were considered T-cell suppressive [39].
The results from GSVA analyses have revealed cluster A
modification pattern was significantly associated with
stromal activation. Therefore, we speculated that stromal
activation in cluster A inhibited the antitumor effect of
immune cells. Subsequent analyses showed that stroma
activity was significantly enhanced in cluster A such as
the activation of epithelial-mesenchymal transition
(EMT), transforming growth factor beta (TGFb) and
angiogenesis pathways, which confirmed our speculation

(Fig. 3b) Based on the above analyses, we were surprised
to find three m6A modification patterns had significantly
distinct TME cell infiltration characterization. Cluster A
was classified as immune-excluded phenotype, charac-
terized by innate immune cell infiltration and stromal
activation; cluster B was classified as immune-inflamed
phenotype, characterized by adaptive immune cell infil-
tration and immune activation; cluster C was classified
as immune-desert phenotype, characterized by the sup-
pression of immunity (Figs. 2c-d and 3a-b). We then
used the CIBERSORT method, a deconvolution algo-
rithm using support vector regression for determining
the immune cell type in tumors, to compare the compo-
nent differences of immune cells among the three m6A
modification patterns. We found that there were no sig-
nificant differences on the compositions of TME cell
types between the three m6A modification patterns,
which suggested that m6A methylation modification
did not change TME infiltrating-cell types of tumors
(Figure S2K).
We then examined the specific correlation between

each TME infiltration cell type and each m6A regulator
using spearman’s correlation analyses (Figure S3A). We
focused on the regulator KIAA1429, a m6A methyltrans-
ferases, and revealed its significantly negative correlation
with numerous TME infiltrating immune cells. We used
ESTIMATE algorithm to quantify the overall infiltration
of immune cells between high and low KIAA1429 ex-
pression patients. The results showed that low expres-
sion of KIAA1429 exhibited high immune scores, which
meant that the TME with low expression of KIAA1429
existed a significantly increased immune cell infiltration,
thus confirming the above findings (Figure S3B). We
then explored the specific difference of 23 TME infiltrat-
ing immune cells between high and low KIAA1429 ex-
pression patients. We found tumors with low expression
of KIAA1429 presented significantly increased infiltra-
tion in 23 TME immune cells compared to patients with
high expression (Figure S3C). Recent studies paid special
attention to the mechanism of m6A modification

(See figure on previous page.)
Fig. 1 Landscape of genetic and expression variation of m6A regulators in gastric cancer. a Summary of the dynamic reversible process of m6A
RNA methylation mediated by regulators (“writers”, “erasers” and “readers”) and their potential biological functions for RNA. b The mutation
frequency of 21 m6A regulators in 433 patients with gastric cancer from TCGA-STAD cohort. Each column represented individual patients. The
upper barplot showed TMB, The number on the right indicated the mutation frequency in each regulator. The right barplot showed the
proportion of each variant type. The stacked barplot below showed fraction of conversions in each sample. c The CNV variation frequency of
m6A regulators in GSE62717 cohort. The height of the column represented the alteration frequency. The deletion frequency, blue dot; The
amplification frequency, red dot. d The location of CNV alteration of m6A regulators on 23 chromosomes using GSE62717 cohort. e Principal
component analysis for the expression profiles of 21 m6A regulators to distinguish tumors from normal samples in GSE2269 cohort. Two
subgroups without intersection were identified, indicating the tumors and normal samples were well distinguished based on the expression
profiles of m6A regulators. Tumors were marked with blue and normal samples marked with yellow. f The expression of 21 m6A regulators
between normal tissues and gastric tissues. Tumor, red; Normal, blue. The upper and lower ends of the boxes represented interquartile range of
values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p value
(*P < 0.05; **P < 0.01; ***P < 0.001)
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Fig. 2 (See legend on next page.)
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regulating the activation of dendritic cells (DCs). DCs,
which are responsible for antigen presentation and the
activation of naive T cells, are a bridge connecting innate
and adaptive immunity, and their activation depending
on the high expression level of MHC molecules, costi-
mulatory factors and adhesion factors [40]. Our study
indicated that tumors with low expression of KIAA1429
showed significant more enrichment of TME DCs infil-
tration including activated DCs, immature DCs, and
plasmacytoid DCs. We also noted that the decreased ex-
pression of KIAA1429 resulted in the comprehensively
elevated expression of MHC molecules, costimulatory
molecules, and adhesion molecules (Figure S3D). Subse-
quent pathway enrichment analyses, as expected, tumors
with low KIAA1429 expression exhibited an obvious en-
hancement in immune activation pathways including the
pathway of antigen processing and presentation, C-type
lectin receptor, NOD-like receptor, T cell receptor, Toll-
like receptor and NF-κB signaling pathway (Figure S3E).
It was interesting that the immune-related pathway en-
hancements were accompanied by the increased expres-
sion of immunological checkpoint molecules PD1/L1
(Figure S3D-S3E). So we investigated whether the ex-
pression of KIAA1429 regulator affected the therapeutic
efficacy of immune checkpoint blockade. In anti-PD-L1
immunotherapy cohort (IMvigor210), a survival benefit
trend was observed in patients with low expression of
KIAA1429 (Figure S3F). In anti-PD-1 immunotherapy
cohort (GSE78220), we did not observe a significantly
prolonged survival owing to the few samples (Figure
S3G). From above, we could speculate that KIAA1429-
mediated m6A methylation modification may promote
the activation of TME DCs, thus enhancing the intra-
tumoral antitumor immune response.

m6A methylation modification patterns in ACRG cohort
To further explore the characteristics of these m6A
modification phenotypes in the different clinical traits
and biological behaviors, we fixed attention on the
ACRG cohort, which comprised 300 gastric cancer pa-
tients and offered the most comprehensive clinical

annotation. Similar to all GC datasets clustering, un-
supervised clustering also discovered three fully distinct
patterns of m6A modification in ACRG cohort (Figure
S4A-S4D and Fig. 3c-d). There was significant distinc-
tion existed on the m6A transcriptional profile among
three different m6A modification patterns (Fig. 3d).
m6Acluster A was characterized by the increased
expression of FTO and HNRNPA2B1, and presented
variable decreases in other m6A regulators; m6Acluster
B showed high expression of ELAVL1, HNRNPC,
LRPPRC, METTL14, RBM15, RBM15B, YTHDC2 and
YTHDF2; and m6Acluster C exhibited significant in-
creases in the expression of FMR1 IGF2BP1, WTAP,
ZC3H13 and YTHDF1. Patients with EMT molecular
subtypes were characterized by the m6Acluster-A
methylation modification patterns, while MSI subtypes
were characterized by the m6Acluster-B modification
patterns. We also noted that tumors with m6Acluster-A
patterns presented poorer differentiation and were
enriched in the diffuse histological subtype. A better
tumor differentiation was observed in the m6Acluster-B
and m6Acluster-C patterns, which were enriched in the
intestinal histological subtype. In gastric cancer, the
EMT molecular subtype and diffuse histological type
was markedly linked to a poorer survival, while MSI
linked to a better clinical outcome. Therefore, the tu-
mors characterized by m6Acluster-A modification pat-
terns were significantly correlated with stromal
activation, high malignancy and rapid progression
(Fig. 3c). One-way ANOVA test also confirmed the
remarkable differences on m6A regulator expression be-
tween three key m6A modification patterns. Prognostic
analysis also revealed m6Acluster B to be markedly related
to prolonged survival, while m6Acluster A and m6Acluste
C were characterized by poorer survival (Figure S4E-S4F).
Consistent with the above findings, most patients with
EMT subtypes were clustered into m6Acluster A and
almost no EMT subtypes were in m6Acluster B, which
confirmed again that m6Acluster A was significantly
relevant to the stromal activation and m6Aclustre B
relevant to the immune activation (Fig. 3e and Table S6).

(See figure on previous page.)
Fig. 2 Patterns of m6A methylation modification and biological characteristics of each pattern. a The interaction between m6A regulators in
gastric cancer. The circle size represented the effect of each regulator on the prognosis, and the range of values calculated by Log-rank test was
p < 0.001, p < 0.01, p < 0.05 and P < 0.1, respectively. Green dots in the circle, risk factors of prognosis; Black dots in the circle, protective factors of
prognosis. The lines linking regulators showed their interactions, and thickness showed the correlation strength between regulators. Negative
correlation was marked with blue and positive correlation with red. The regulator cluster A-D was marked with blue, red, yellow and brown,
respectively. b Survival analyses for the three m6A modification patterns based on 1051 patients with gastric cancer from five GEO cohorts
(GSE15459, GSE34942, GSE57303, GSE62254/ACRG and GSE84437) including 389 cases in m6Acluster-A, 348 cases in m6Acluster-B, and 322 cases
in m6Acluster-C. Kaplan-Meier curves with Log-rank p value 0.011 showed a significant survival difference among three m6A modification
patterns. The m6Acluster B showed significantly better overall survival than the other two m6Acluster. c-d GSVA enrichment analysis showing the
activation states of biological pathways in distinct m6A modification patterns. The heatmap was used to visualize these biological processes, and
yellow represented activated pathways and blue represented inhibited pathways. The gastric cancer cohorts were used as sample annotations.
c m6Acluster A vs m6Acluster B; d m6Acluster B vs m6Acluster C
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Generation of m6A gene signatures and functional
annotation
To further investigate the potential biological behavior
of each m6A modification pattern, we determined 718
m6A phenotype-related DEGs using limma package (Fig-
ure S4G and Table S7). The clusterProfiler package was
used to perform GO enrichment analysis for the DEGs.
The biological processes with significant enrichment
were summarized in Table S8. Surprisingly, these genes
showed enrichment of biological processes remarkably
related to m6A modification and immunity, which con-
firmed again that m6A modification played a non-
negligible role in the immune regulation in tumor
microenvironment (Fig. 3f). To further validate this
regulation mechanism, we then performed unsupervised
clustering analyses based on the obtained 718 m6A
phenotype-related genes in order to classify patients into
different genomic subtypes. Consistent with the cluster-
ing grouping of m6A modification patterns, the unsuper-
vised clustering algorithm also revealed three distinct
m6A modification genomic phenotypes and we named
these three clusters as m6A gene cluster A-C, respect-
ively (Figure S5A-S5D, Fig. 4a and Table S6). This
demonstrated that three distinct m6A methylation modi-
fication patterns did exist in gastric cancer. We observed
that tumors in m6A gene cluster C patterns also exhib-
ited poorer differentiation and were enriched in the
diffuse histological subtype. The opposite patterns were
observed in m6A gene cluster A and cluster B. Patients
with alive status or MSI subtypes were mainly concen-
trated in the m6A gene cluster A, while patients with
clinical stage IV or EMT molecular subtypes were char-
acterized by the m6A gene cluster C patterns (Fig. 4a).
Analysis also indicated three distinct gene clusters were
characterized by different signature genes (Fig. 4a).
Eighty-eight of three hundred patients with gastric can-
cer were clustered in gene cluster A, which were proved
to be related to better prognosis. While patients in gene
cluster C (105 patients) experienced the outcome of
poorer prognosis. An intermediate prognosis was ob-
served in gene cluster C, with 107 patients clustered
(Fig. 4b). In the three m6A gene clusters, the prominent

differences in the expression of m6A regulators were
observed, which was in accordance with the expected
results of m6A methylation modification patterns
(Fig. 4c).

Characteristics of clinical and transcriptome traits in
m6A-related phenotypes
To reveal the role of m6A-related phenotypes in the
TME immune regulation, we studied the expression of
chemokine and cytokine characterizing three gene clus-
ters. The selected cytokine and chemokine were ex-
tracted from published literature, of which, TGRB1,
SMAD9, TWIST1, CLDN3, TGFBR2, ACTA2, COL4A1,
ZEB1 and VIM were considered to be associated with
the transcripts of transforming growth factor (TGF)b/
EMT pathway. PD-L1, CTLA-4, IDO1, LAG3, HAVCR2,
PD-1, PD-L2, CD80, CD86, TIGIT and TNFRSF9 were
considered to be related to the transcripts of immune
checkpoints. TNF, IFNG, TBX2, GZMB, CD8A, PRF1,
GZMA, CXCL9 and CXCL10 were to be correlated with
the transcripts of immune activation [29, 32]. We found
the mRNAs relevant to TGFb/EMT pathway were sig-
nificantly upregulated in gene cluster C, which demon-
strated that this cluster was deemed as stromal-activated
group. While gene cluster A showed high expression of
mRNAs related to immune activation transcripts. This
suggested that gene cluster A could be classified as the
immune-activation group (Figure S5F-S5H). To better
depict the function of m6A signature genes, we exam-
ined the known signatures in patients with gastric cancer
(Figure S5E). The results also confirmed that gene clus-
ter C was characterized by the status of stromal activa-
tion and cancer promotion, and gene cluster A was
significantly related to immune activation status (Figure
S5E-S5H). Consistent with the above findings, as shown
in Fig. 4d and Table S6, almost all (41 of 45, 91%)
patients with EMT subtype (molecular subtypes in
ACRG cohort) were classified into gene cluster C, which
was relevant to the worse survival outcome.
The above results showed again that m6A methylation

modification played a non-negligible regulation role in
shaping different TME landscapes. However, these

(See figure on previous page.)
Fig. 3 TME cell infiltration characteristics and transcriptome traits in distinct m6A modification patterns. a The abundance of each TME infiltrating
cell in three m6A modification patterns. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes
represented median value, and black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). b
Differences in stroma-activated pathways including EMT, TGF beta and angiogenesis pathways among three distinct m6A modification patterns.
The statistical differences among three modification patterns was tested by the one-way ANOVA test. The asterisks represented the statistical p
value (*P < 0.05; **P < 0.01; ***P < 0.001). c Unsupervised clustering of 21 m6A regulators in the ACRG gastric cancer cohort. The m6Acluster, ACRG
molecular subtypes, tumor stage, survival status and age were used as patient annotations. Yellow represented high expression of regulators and
blue represented low expression. d Principal component analysis for the transcriptome profiles of three m6A modification patterns, showing a
remarkable difference on transcriptome between different modification patterns. e The proportion of ACRG molecular subtypes in the three
modification patterns. MSI subtype, red; EMT subtype, blue; MSS/TP53+ subtype, green; MSS/TP53- subtype, yellow. f Functional annotation for
m6A-related genes using GO enrichment analysis. The color depth of the barplots represented the number of genes enriched
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analyses were only based on the patient population and
could not accurately predict the pattern of m6A methy-
lation modification in individual patients. Considering
the individual heterogeneity and complexity of m6A
modification, based on these phenotype-related genes,
we constructed a set of scoring system to quantify the
m6A modification pattern of individual patients with
gastric cancer, we termed as m6Ascore. The alluvial dia-
gram was used to visualize the attribute changes of
individual patients (Fig. 4d). To better illustrate the char-
acteristics of m6A signature, we also tested the correl-
ation between the known signatures and the m6Ascore
(Fig. 4e and Table S9). Kruskal-Wallis test revealed
significant difference on m6Ascore between m6A gene
clusters. Gene cluster A showed the lowest median score
while gene cluster C had the highest median score,
which indicated that low m6Ascore could be closely
linked to immune activation-related signatures, whereas
high m6Ascore could be linked to stromal activation-
related signatures (Fig. 4f). More importantly, m6Aclus-
ter A showed the significantly increased m6Ascore com-
pared to the other clusters and m6Acluster B presented
the lowest median score (Fig. 4g). The analyses for the
activity of stroma-related pathways indicated high scores
were significantly associated with enhanced activation of
stromal pathways (Fig. 4h). In addition, patients with
EMT subtypes also showed the lowest m6Ascore com-
pared to other three ACRG molecular subtypes (Fig. 5a).
The above results strongly suggested that low m6Ascore
was significantly correlated with immune-activation and
high m6Ascore was correlated with stromal-activation.
The m6Ascore could better evaluate the m6A modifi-
cation patterns of individual tumor, and further evaluate
tumors’ TME cell-infiltration characterization, in order
to distinguish the true and false nature of TME immune
infiltration.
Next, we sought to further identify the value of

m6Ascore in predicting patients’ outcome. With the

cutoff value 0.0291 determined by survminer package,
patients were divided into low or high m6Ascore group.
Patients with low m6Ascore demonstrated a prominent
survival benefit (HR 3.0 (2.12–4.21); Fig. 5b), with 5-year
survival rate twice than patients with high m6Ascore
(69.4% vs 33.5%). We tested whether the m6Ascore
could serve as an independent prognostic biomarker for
gastric cancer. Multivariate Cox regression model ana-
lysis, which included the factors of patients’ age, gender,
TNM status, histological type, MSI status, TP53 status
and ACRG molecular subtypes, confirmed m6Ascore as
a robust and independent prognostic biomarker for
evaluating patient outcomes (HR 2.54(1.71–3.8); Figure
S6A). We specifically examined the ability of m6Ascore
signature to predict the efficacy of adjuvant chemotherapy
in patients with gastric cancer. We found that patients
with low m6Ascore showed significant therapeutic advan-
tages among patients who also received adjuvant chemo-
therapy, with 5-year survival rate 77.5% vs 59.2% (Fig. 5c).
Another results obtained indicated that the prediction
power of m6Ascore was not interfered by adjuvant
chemotherapy, and both in patients receiving chemother-
apy or not, low m6Ascore group always showed the
obvious survival advantage (Fig. 5c). In addition, we re-
vealed that younger patients, diffuse histological subtype
and advanced patients were significantly associated with a
higher m6Ascore, which meant that these patients were
characterized by the m6Acluster-A modification patterns
and immune-excluded phenotype, with a poorer clinical
outcome. These results demonstrated m6Ascore could be
also used to evaluate certain clinical characteristics of pa-
tients such as MSI status, molecular subtypes, histological
subtypes as well as clinical stage, etc. (Figure S6B).

Characteristics of m6A modification in TCGA molecular
subtypes and tumor somatic mutation
A comprehensive molecular landscape has been con-
structed for gastric cancer by TCGA project, which

(See figure on previous page.)
Fig. 4 Construction of m6A signatures. a Unsupervised clustering of overlapping m6A phenotype-related genes in ACRG cohorts to classify
patients into different genomic subtypes, termed as m6A gene cluster A-C, respectively. The gene clusters, m6Aclusters, ACRG molecular subtypes,
tumor stage, histology, survival status and age were used as patient annotations. b Kaplan-Meier curves indicated m6A modification genomic
phenotypes were markedly related to overall survival of 300 patients in ACRG cohort, of which 88 cases were in gene cluster A, 107 cases in gene
cluster B and 105 cases in gene cluster C (P < 0.0001, Log-rank test). c The expression of 21 m6A regulators in three gene cluster. The upper and
lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed
outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). The one-way ANOVA test was used to test the
statistical differences among three gene clusters. d Alluvial diagram showing the changes of m6Aclusters, ACRG molecular subtypes, gene cluster
and m6Ascore. e Correlations between m6Ascore and the known gene signatures in ACRG cohort using Spearman analysis. Negative correlation
was marked with blue and positive correlation with orange. f Differences in m6Ascore among three gene clusters in ACRG cohort. The Kruskal-
Wallis test was used to compare the statistical difference between three gene clusters (P < 0.001). g Differences in m6Ascore among three m6A
modification patterns in ACRG cohort (P < 0.001, Kruskal-Wallis test). h Differences in stroma-activated pathways between high m6Ascore and low
m6Ascore groups. APM, antigen processing machinery; EMT, epithelial-mesenchymal transition; TGFb, transforming growth factor beta. The upper
and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value. The asterisks represented the
statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001)
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classified gastric cancer into four molecular subtypes in-
cluding genome stable (GS), microsatellite instability
(MSI), EBV infection, and chromosomal instability (CIN).
We evaluated the difference of m6Ascore between these
molecular subtypes. The higher m6Ascore was obviously
concentrated on GS subtype and showed a worse survival
in patients, while the lower m6Ascore was concentrated
on the subtypes of MSI and EBV infection, which was re-
lated to better survival (5-year survival rate, 25.9% vs
43.3%; HR 1.81(1.26–2.62); Fig. 5d-e). The highly micro-
satellite instability subtype, characterized by better prog-
nosis, was significantly correlated with lower m6Ascore,
whereas MSI-Low and MSS had a higher m6Ascore
(Fig. 5f). Multivariate analysis for TCGA-STAD cohort
also confirmed that m6Ascore could act as an independ-
ent prognostic biomarker in gastric cancer (Figure S6C).
Previous studies indicated that patients with EBV-positive
gastric cancer have been shown to respond to anti-PD-1/
L1 antibodies in several studies in spite of the lower MSI
or tumor mutation burden (TMB) [41, 42]. In our study,
EBV infected patients were markedly associated with
lower m6Ascore than CIN and GS subtypes as well as
EBV non-infected patients, which implied m6Ascore sig-
nature could be a more effective biomarker for the predic-
tion of immunotherapeutic efficacy than MSI and TMB in
patients with gastric cancer (Fig. 5e-f). Further research
showed that tumors with MSI subtype were mainly char-
acterized by the m6Acluster-B methylation modification
patterns, while tumors with MSS subtype were character-
ized by the m6Acluster-C modification patterns (Figure
S7A). The m6A regulators ALKBH5, CBLL1, ELAVL1,
FMR1, HNRNPC, KIAA1429, METTL14, RBM15,
RBM15B, WTAP, YTHDC1, YTHDC2, YTHDF2 and
YTHDF3 were significantly up-regulated in MSI subtypes
compared to MSS subtypes, while IGF2BP1, YTHDF1 and
ZC3H13 were markedly down-regulated (Figure S7B). For
EB virus infection, patients with EBV-positive were mainly
characterized by the m6Acluster-A methylation

modification patterns, while EBV-negative patients did
not show a characteristic pattern of m6A methylation
modification. There were no significant difference on m6A
modification patterns between EBV-negative patients
(Figure S7C). In addition, we found the m6A regulators
IGF2BP1, KIAA1429, LRPPRC, YTHDF3 and ZC3H13
were remarkably down-regulated in EBV-negative patients
than EBV positive patients, while FTO was significantly
down-regulated (Figure S7D). The above results suggested
that the potential mechanisms on the change of m6A
modification patterns mediated by EBV and MSI etc. may
be that these factors changed the status of m6A regulators.
These findings could contribute to enhancing our under-
standing of the mechanisms of the formation of m6A
modification pattern differences in tumors.
Then, we analyzed the distribution differences of som-

atic mutation between low and high m6Ascore in
TCGA-STAD cohort using maftools package. As shown
in Fig. 5g-h, low m6Ascore group presented more exten-
sive tumor mutation burden than the high m6Ascore
group, with the rate of the 10th most significant mutated
gene 25% versus 10%. The TMB quantification analyses
confirmed the low m6Ascore tumors was markedly cor-
related with a higher TMB (Figure S7E). The m6Ascore
and TMB also exhibited a significant negative correl-
ation (Figure S7F). Accumulated evidence demonstrated
patients with high TMB status presented a durable
clinical response to anti-PD-1/PD-L1 immunotherapy.
Therefore, the above results indirectly demonstrated that
the difference in tumor m6A modification patterns could
a crucial factor that mediated the clinical response to
anti-PD-1/PD-L1 immunotherapy. And the values of
m6Ascore in predicting immunotherapeutic outcomes
were also indirectly confirmed.
The clinical trials as well as preclinical researches have

revealed patients with higher somatic TMB were corre-
lated with enhanced response, long-term survival and
durable clinical benefit when treated with immune

(See figure on previous page.)
Fig. 5 Characteristics of m6A modification in TCGA molecular subtypes and tumor somatic mutation. a Differences in m6Ascore between
different ACRG molecular subtypes. The Kruskal-Wallis test was used to compare the statistical difference between four ACRG molecular subtypes
(p < 0.0001). b Survival analyses for low (157 cases) and high (143 cases) m6Ascore patient groups in ACRG cohort using Kaplan-Meier curves (HR,
3.0 (2.12–4.21); P < 0.0001, Log-rank test). c Survival analyses for subgroup patients stratified by both m6Ascore and treatment with adjuvant
chemotherapy using Kaplan-Meier curves. H, high; L, Low; ADJC, adjuvant chemotherap (P < 0.0001, Log-rank test). d Survival analyses for low
(157 cases) and high (143 cases) m6Ascore patient groups in the TCGA-STAD cohort using Kaplan-Meier curves (HR, 1.81(1.26–2.62); P = 0.001,
Log-rank test). e Differences in m6Ascore between different TCGA-STAD molecular subtypes. The upper and lower ends of the boxes represented
interquartile range of values. The lines in the boxes represented median value. The Kruskal-Wallis test was used to compare the statistical
difference between four TCGA-STAD molecular subtypes (p < 0.0001). GS, genome stable; MSI, microsatellite instability; EBV, EBV infection; CIN,
chromosomal instability. f Differences in m6Ascore among different of microsatellite subtypes. The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value. The asterisks represented the statistical p value
(*P < 0.05; **P < 0.01; ***P < 0.001). MSS, microsatellite stable; MSI-H, high microsatellite instability; MSI-L, low microsatellite instability. g, h The waterfall
plot of tumor somatic mutation established by those with high m6Ascore (g) and low m6Ascore (h). Each column represented individual patients. The
upper barplot showed TMB, The number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of
each variant type
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checkpoint blockade therapy. The individual altered
genes could mediate resistance or sensitivity to immuno-
therapy. For specific altered genes in TCGA-TSAD such
as ARID1A and PIK3CA, mutant type had significantly
lower m6Ascore compared to wild type, whereas there
was no significant difference in m6Ascore between wild
and mutant types in TP53 and RHOA (Fig. 5f). These
results would provide novel perspective for exploring the
mechanisms of m6A methylation modification in the
tumor somatic mutations, shaping of TME landing, and
roles in immune checkpoint blockade therapy.

m6A modification patterns in the role of anti-PD-1/L1
immunotherapy
In order to further test the stability of m6Ascore model,
we applied m6Ascore signature established in ACRG co-
hort to other independent gastric cancer cohorts to
verify its prognostic value (GSE84437, HR 1.89(1.44–
2.49); GSE15459, HR 2.05(1.30–3.22); GSE34942, HR
1.52(0.64–3.63); Figure S8A-S8C). The combined set of
all GEO cohorts was validated (HR 1.94(1.62–2.31); Fig-
ure S8D). The ability of m6Ascore to predict relapse-
free survival was also evaluated (GSE26253, HR
1.33(0.98–1.80); GSE62254, HR 2.53(1.75–3.65); Figure
S8E-S8F). Next, we continued to extend the m6Ascore
signature to all digestive system tumors including cholan-
giocarcinoma, colon adenocarcinoma, pancreatic adeno-
carcinoma, esophageal carcinoma and liver hepatocellular
carcinoma (HR 1.4(1.17–1.68); Figure S8G). These data
indicated m6A modification patterns correlated with
better clinical benefit. The predictive advantage evaluated
with ROC curves was especially reflected in elderly patients
(Figure S8H-S8I).
Immunotherapies represented by PD-L1 and PD-1

blockade has undoubtedly emerged a major break-
through in cancer therapy. We investigated whether the
m6A modification signature could predict patients’ re-
sponse to immune checkpoint blockade therapy based
on two immunotherapy cohorts. In both anti-PD-L1 co-
hort (IMvigor210) and anti-PD-1 cohort (GSE78220),
patients with low m6Ascore exhibited significantly clin-
ical benefits and a markedly prolonged survival (Fig. 6a-
g; IMvigor210, HR 1.73(1.20–2.48), Fig. 6a; GSE78220,
HR 4.58(1.23–17.10), Fig. 6d). The significant thera-
peutic advantages and clinical response to anti-PD-1/L1
immunotherapy in patients with low m6Ascore com-
pared to those with high m6Ascore were confirmed
(Fig. 6b-c and e-g). In addition, patients with low
m6Ascore showed a obviously high expression of PD-L1,
which indicated a potential response to anti-PD-1/L1
immunotherapy (Fig. 6h). Further research revealed that
regulatory T-cells and TME stroma were significantly
activated in tumors with high m6Ascore, which medi-
ated immune tolerance of tumors (Fig. 6i). Tumor

neoantigen burden, closely linked to immunotherapeutic
efficacy, was also assessed. We found patients with com-
bination of low m6Ascore and high neoantigen burden
showed a great survival advantage (Fig. 6j). The above
implied that the quantification of m6A modification pat-
terns was a potential and robust biomarker for prognosis
and clinical response assessment of immunotherapy
(Fig. 6k). The immune phenotypes of tumors in the
IMvigor210 cohort has been detected, so we investigated
the difference of m6Ascore among different phenotypes.
We found that higher m6Ascore was remarkably associ-
ated with exclusion and desert immune phenotypes, and
checkpoint inhibitors were difficult to exert antitumor
effect in these phenotype (Fig. 6l). In summary, our work
strongly indicated that m6A methylation modification
patterns was significantly correlated with tumor immune
phenotypes and response to anti-PD-1/L1 immunother-
apy, and the established m6A modification signature
would contribute to predicting the response to anti-PD-
1/L1 immunotherapy.

Discussion
Increasing evidence demonstrated that m6A modifica-
tion took on an indispensable role in inflammation, in-
nate immunity as well as antitumor effect through
interaction with various m6A regulators. As most studies
focus on single TME cell type or single regulator, the
overall TME infiltration characterizations mediated by
integrated roles of multiple m6A regulators are not com-
prehensively recognized. Identifying the role of distinct
m6A modification patterns in the TME cell infiltration
will contribute to enhancing our understanding of TME
antitumor immune response, and guiding more effective
immunotherapy strategies.
Here, based on 21 m6A regulators, we revealed three

distinct m6A methylation modification patterns. These
three patterns had significantly distinct TME cell infil-
tration characterization. Cluster A was characterized by
the activation of innate immunity and stroma, corre-
sponding to immune-excluded phenotype; cluster B was
characterized by the activation of adaptive immunity,
corresponding to immune-inflamed phenotype; cluster C
was characterized by the suppression of immunity, cor-
responding to immune-desert phenotype. The immune-
excluded and immune-desert phenotypes could be
regarded as non-inflamed tumors. The immune-
inflamed phenotype, known as hot tumor, show by a
large number of immune cell infiltration in TME [39,
43, 44]. Although the immune-excluded phenotype also
showed the presence of abundant immune cells, the im-
mune cells were retained in the stroma surrounding
tumor cell nests rather than penetrate their parenchyma.
The stroma could be confined to the tumor envelope or
may penetrate the tumor itself, making the immune cells
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appear to be really inside the tumor [45–47]. The
immune-desert phenotypes were associated with im-
mune tolerance and ignorance, and lack of activated and
priming T-cell [48]. Consistent with the above defini-
tions, we found cluster A exhibited a significant stroma
activation status, including the highly expressed angio-
genesis, EMT and TGF-β pathways, which were consid-
ered T-cell suppressive. Combined with the TME cell-
infiltrating characteristics in each cluster, it confirmed
the reliability of our classification of immune phenotypes
for different m6A modification patterns. Therefore, after
fully exploring the TME cell–infiltrating characterization
induced by distinct m6A modification patterns, it was
not surprising that cluster A had the activated innate
immunity but poorer prognosis.
Further, in this study, the mRNA transcriptome differ-

ences between distinct m6A modification patterns have
been proved to be significantly associated with m6A and
immune related biological pathways. These differentially
expressed genes were considered as m6A-related signa-
ture genes. Similar to the clustering results of the m6A
modification phenotypes, three genomic subtypes were
identified based on m6A signature genes, which were
also significantly correlated with stromal and immune
activation. This demonstrated again that the m6A modi-
fication was of great significance in shaping different
TME landscapes. Therefore, a comprehensive assess-
ment of the m6A modification patterns will enhance our
understanding of TME cell-infiltrating characterization.
Considering the individual heterogeneity of m6A modifi-
cation, it was urgently demanded to quantify the m6A
modification patterns of individual tumor. For that, we
established a set of scoring system to evaluate the m6A
modification pattern of individual patients with gastric
cancer—the m6A gene signature. The m6A modification
pattern characterized by immune-excluded phenotype
exhibited a higher m6Ascore, while the pattern

characterized by immune-inflamed phenotype showed a
lower m6Ascore. In addition, In IMvigor210 cohort with
the determined immune phenotype, these results were
well validated [33]. This suggested m6Ascore was a reli-
able and robust tool for comprehensive assessment of
individual tumor m6A modification patterns, which
could be used to further determine the TME infiltration
patterns, that was, tumor immune phenotypes. Inte-
grated analyses also demonstrated that m6Ascore was an
independent prognostic biomarker in gastric cancer. Pa-
tients with EBV and MSI subtypes, sensitive to checkpoint
immunotherapy [42], was significantly related to lower
m6Ascore. Considering the low mutation burden but high
immune infiltration in EBVþ tumors [41], our m6Ascore
showed a predictive advantage in precision immunother-
apy for gastric cancer.
Our data also revealed a markedly negative correlation

between m6Ascore and tumor mutation burden. Con-
sistent with previous studies, EMT and GS molecular
subtypes demonstrated the lowest m6Ascore, underlin-
ing the core role of stromal activation in resistance to
checkpoint immunotherapy [49, 50]. This indicated that
response to checkpoint immunotherapy was not only as-
sociated with antigen processing, and improved cytolytic
activity, but also related to suppression of angiogenesis,
fibroblast activation, TGF beta pathway components and
the EMT. Previous studies confirmed that the EMT- and
TGFbeta-related pathway activation resulted in de-
creased trafficking of T-cell into tumors as well as their
weakened tumor killing effects [33, 49]. The above sug-
gested that the activated stromal TME in the activated
immune TME could mediate therapeutic resistance to
immune-checkpoint blockade, as well as influence the
individual precise immunotherapy of gastric cancer. In
this work, we showed m6A methylation modification
patterns played a nonnegligible role in shaping different
stromal and immune TME landscape, implying m6A

(See figure on previous page.)
Fig. 6 m6A modification patterns in the role of anti-PD-1/L1 immunotherapy. a Survival analyses for low (89 cases) and high (169 cases)
m6Ascore patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan-Meier curves (IMvigor210 cohort; HR, 1.73(1.20–2.48); P = 0.002,
Log-rank test). b The proportion of patients with response to PD-L1 blockade immunotherapy in low or high m6Ascore groups. SD, stable
disease; PD, progressive disease; CR, complete response; PR, partial response. Responser/Nonresponer: 41%/58% in the low m6Ascore groups and
20%/80% in the high m6Ascore groups. c Distribution of m6Ascore in distinct anti-PD-L1 clinical response groups. d Survival analyses for low and
high m6Ascore patient groups in the anti-PD1 immunotherapy cohort using Kaplan-Meier curves (GSE78220 cohort; HR, 4.58(1.23–17.10); P =
0.013, Log-rank test). e The proportion of patients with response to PD-1 blockade immunotherapy in low or high m6Ascore groups. Responser/
Nonresponer: 71%/29% in the low m6Ascore groups and 25%/75% in the high m6Ascore groups. f The correlation of m6Ascore with clinical
response to anti-PD-1 immunotherapy. Pt, patients. PD, blue; PR, purple; CR, red. g Differences in m6Ascore among distinct anti-PD-1 clinical
response groups. h Differences in PD-L1 expression between low and high m6Ascore groups (p < 0.0001, Wilcoxon test). i Differences in stroma-
activated pathways and abundance of regulatory T cells (considered as immune suppression) between low m6Ascore and high m6Ascore groups
in anti-PD-L1 immunotherpy cohort (*P < 0.05; **P < 0.01; ***P < 0.001). j Survival analyses for patients receiving anti-PD-L1 immunotherapy
stratified by both m6Ascore and neoantigen burden using Kaplan-Meier curves. H, high; L, Low; NEO, neoantigen burden (P < 0.0001, Log-rank
test). k The predictive value of the quantification of m6A modification patterns in patients treated with anti-PD-1/L1 immunotherapy (AUC, 0.768).
l Differences in m6Ascore among distinct tumor immune phenotypes in IMvigor210 cohort. The lines in the boxes represented median value
(p = 0.015, Kruskal-Wallis test)
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modification could affect the therapeutic efficacy of
immune checkpoint blockade. The m6A gene signature
with integrated various biomarkers including mutation
load, neoantigen load, PD-L1 expression, stromal and
immune TME and MSI status, could be the more
effective predictive strategy for immunotherapy. We also
confirmed the predictive value of the m6Ascore in two
cohort with anti-PD-1 and anti-PD-L1 immunotherapy.
A significantly difference on m6Ascores existed between
non-responders and responders.
In short, in clinical practice, the m6Ascore could be

used to comprehensively evaluate the m6A methylation
modification patterns as well as their corresponding TME
cell infiltration characterization within individual patient,
further to determine the immune phenotypes of tumors
and guide the more effective clinical practice. We also
demonstrated the m6Ascore could be utilized for asses-
sing patients’ clinicopathological features including stages
of tumor inflammation, tumor differentiation levels,
clinical stages, histological subtypes, molecular subtypes,
genetic variation, MSI status, EBV infection and tumor
mutation burden etc. The detailed relationships between
m6Ascore and clinicopathological features could be found
in our study. Similarly, m6Ascore could act as an
independent prognostic biomarker for predicting patients’
survival. We could also predict the efficacy of adjuvant
chemotherapy and the patients’ clinical response to anti-
PD-1/PD-L1 immunotherapy through m6Ascore. More
importantly, this study has yielded several novel insights
for cancer immunotherapy that targeting m6A regulators
or m6A phenotype-related genes for changing the m6A
modification patterns, and further reversing the adverse
TME cell infiltration characterization, that was the
transformation of “cold tumors” into “hot tumors”, may
contribute to exploiting the development of novel drug
combination strategies or novel immunotherapeutic
agents in the future. Our findings provided novel ideas for
improving the patients’ clinical response to immuno-
therapy, identifying different tumor immune phenotypes
and promoting personalized cancer immunotherapy in the
future.

Conclusions
In conclusion, this work demonstrated the extensive
regulation mechanisms of m6A methylation modification
on tumor microenvironment. The difference of m6A
modification patterns was a factor that could not be
ignored to cause the heterogeneity and complexity of
individual tumor microenvironment. The comprehensive
evaluation of individual tumor m6A modification pattern
will contribute to enhancing our understanding of tumor
microenvironment cell-infiltrating characterization and
guiding more effective immunotherapy strategies.
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