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Abstract

In vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of
drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different
types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit
protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-
CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+
and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the
ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or
more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune
responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC
complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss.
The development and design of mRNA therapies was recently boosted by several critical innovations including the
development of technologies for the production and delivery of high quality and stable mRNA. Several technical
obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the
recent years.
This review will summarize the most recent technological developments and application of mRNA vaccines in
clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate
and adaptive immune responses.
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Introduction
Although remarkable progress has been achieved during
the last decade to combat cancer, it is still the world’s
second most leading cause of death [1]. Besides surgery,
radiation and chemotherapy as essential columns of
anti-tumor treatment, immunotherapy and targeted
therapies have lately revolutionized and complemented
anti-tumor therapy [2, 3]. The tremendous success of
checkpoint inhibitors (CPI) for a broad variety of

malignant diseases has generated new interest in immu-
notherapeutic approaches to fight cancer [2]. Amongst
those, tumor-specific vaccines have had a long history of
intensive research and clinical application, however with
limited success in the past. The optimal route and ve-
hicle of application, the choice of the appropriate adju-
vant and the correct identification of the target antigen
have been shown to be of crucial importance [4]. The
basis of all these developments is the fact that T cells
can eliminate cancer cells. They have to recognize
tumor-specific antigens and need to be generated in
patients in sufficient amounts [5]. For the progress of T-
cell associated cytotoxicity, the identification of tumor-
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specific antigens set a milestone and paved the way for
its application as tumor vaccines [6].
Individualized messenger RNA (mRNA) vaccines are

in some cases applied together with cytokines [7] or bac-
terial and viral adjuvants which trigger pattern recogni-
tion receptors (PRRs). mRNA vaccines were shown to
generate potent and protective immune responses that
consist of cellular and humoral components and are cap-
able to eliminate malignant or infected cells [8, 9]. They
can be delivered by direct injection of naked or stabilized
RNA into lymph nodes, subcutaneous or intradermal ap-
plication, electroporated into ex vivo generated antigen
presenting cells (APC) and complexed with protamine
or nanoparticles [8]. More importantly, compared with
many of the current vaccination strategies (such as DNA
vaccines), the production of mRNA is faster, more flex-
ible and less expensive and it can be used for precise
and individualized therapies [10]. mRNA vaccination
further allows a rapid and safe production of vaccines in
pandemics such as SARS-CoV2 [11]. In addition,
mRNAs allow the development of personalized patient-
specific vaccines based on sequencing results of tumor
samples that can be rapidly adapted [8, 9, 12]. mRNA
vaccines can be produced without the comprehensive
and time-consuming manufacturing problems that are
associated with the production of plasmid DNA, viral
vectors or recombinant proteins. In contrast to plasmid
DNA, mRNA is independent of active cell division and
is effective in mitotic and non-mitotic cells. Unlike the
viral vectors or plasmid DNA that mediate long term ex-
pression of the target genes, which can potentially trig-
ger anti-DNA antibodies and autoimmunity, mRNA
application results in a rapid and transient expression of
the encoded protein or peptide with the duration of a
few days or weeks that makes mRNA easier to control
[8, 13]. Importantly, mRNAs will not be integrated into
the host genome [8, 9] which is an essential safety issue.

mRNA production and stabilization
There are two classes of mRNAs, non-replicating and
self-amplifying, that are currently used. Non-
replicating mRNA encodes only the target antigen,
while self-amplifying mRNA vaccines also encode the
replication machinery of a virus. This results in an in-
crease not only in the duration and level of antigen
expression, but also an enhanced vaccine-induced im-
mune response. Self-amplifying mRNA and non-
replicating mRNA vaccines are used for infectious
diseases [14], while non-replicating mRNA is utilized
in cancer vaccines [8, 9].
Engineered in vitro transcribed (IVT) RNA resembles

the naturally processed and matured mRNA in the cyto-
plasm of eukaryotic cells. Upon vaccination and cellular
uptake at the site of application the RNA is transported

to the cytoplasm. There the cellular translation machin-
ery synthesizes the encoded protein that subsequently
undergoes post-translational modifications yielding a
properly folded functional protein. This process is of
particular interest for the transient expression of
antigen-specific T cell receptors (TCR) [15] or chimeric
antigen receptors (CARs) in peripheral blood lympho-
cytes which are used for adoptive T cell therapies [16].
IVT of mRNA is a well-established procedure [17, 18].

It can be routinely performed in a cell-free approach
and yields high amounts of RNA. First, a DNA template
harboring a primer-binding site for the utilized RNA
polymerase (e.g. T7, T3 or SP6 phage RNA polymerase)
[19] needs to be designed. This DNA template should as
a minimum contain the open reading frame (ORF) of
the protein of interest and flanking untranslated regions
(5’ and 3’ UTR). Characteristic for fully processed ma-
ture mRNA is also the presence of a 5’ cap and a 3’
poly(A) tail [20].
The canonical 5’ cap structure in eukaryotic cells is an

inverted 7-methylguanosine (m7G), which is added co-
transcriptionally to the first nucleotide of the mRNA via
a 5’-5’ triphosphate bridge. The function of the 5’ cap is
to increase the stability and translational efficacy of the
mRNA and also to remove its immunogenicity. IVT
mRNAs exhibit a 5’ triphosphate moiety, which is highly
immunogenic. Triphosphorylated mRNA are recognized
in the cytoplasm by PRRs and cause a type-1 interferon
(IFN1) response [21]. To prevent the recognition of the
IVT mRNA as ‘foreign’, the triphosphate has to be re-
moved and a 5’ cap needs to be added. There are several
strategies to achieve this [22]. Capping can be done co-
transcriptionally by adding a cap-analog to the IVT reac-
tion. The addition of a cap analog harbors the risk that
it will be incorporated in the wrong orientation, yielding
the mRNA to be translation-incompetent. The develop-
ment of anti-reverse cap analogs (ARCA) forces the
polymerase to incorporate the ARCA in the correct for-
ward orientation [23] . Capping can also be done post-
transcriptional by removing the triphosphate with a
phosphatase and adding a m7G by a 2’-O-methyltrans-
ferase. Both, co- and post-transcriptional capping bear
the risk that not all mRNA molecules will be modified,
which leads to increased immunogenicity [24], caused by
the activation of PRRs by wrongly capped mRNAs.
The poly(A) tail can already be part of the DNA tem-

plate but it can also be added post-transcriptionally
using a poly(A) polymerase (PAP) [25]. The poly(A) tail
should be 100-250 nucleotides long. The optimal length
of the poly(A) tail depends on the target cell type. The
poly(A) tail increases the stability of the mRNA and its
translational efficacy. The use of modified adenosines
can further increase the stability of the poly(A) tail
against degradation by cellular RNases [26]. The
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addition of a poly(T) stretch to the DNA template is
preferable, because it gives better control about the pre-
cise length of the tail and makes subsequent enzymatic
manipulation of the mRNA obsolete.
The UTRs have important cellular functions and are

responsible for the regulation of the translation of the
mRNA and thus protein expression [27]. The 5’ UTR is
in concert with the 5’ cap important during the initiation
of the first round of translation and the formation of the
pre-initiation complex. However, the addition of internal
ribosome entry sites (IRES) makes the formation of the
pre-initiation complex obsolete, because the ribosome is
directly recruited to the mRNA [28]. Of note, the 5’ cap
is still important for the stability of the mRNA. The 5’
UTR should also contain the Kozak consensus sequence,
which also contributes to successful initiation of transla-
tion. The Kozak consensus sequence serves as an opti-
mized protein translation initiation site in eukaryotes
[29]. The 3’ UTR was shown to also increase transla-
tional efficacy by including certain sequences, such as
sequences from the α- or β-globin [30]. Generally, a high
GC- and low U-content are favorable to minimize im-
munogenicity and maximize the stability of the IVT
mRNA [31].
The ORF itself encodes the protein of interest. It can

also influence the translation. Several codon
optimization strategies were developed that aim to
optimize the translational process [32]. These strategies
are based on the fact that most amino acids are encoded
by several codons. Some codons are rare and less effi-
cient during translation. However, manipulation of the
original sequence can also lead to unwanted effects, be-
cause studies showed that even synonymous mutations
could contribute to the pathogenesis of complex human
diseases [33].
During IVT, modified nucleotides can be used to

further stabilize the IVT mRNA and also lower the im-
munogenicity [34]. Common substitutions are adenosine
with N6-methyladenosine (m6A), cytidine with 5-
methylcytidine (m5C) or uridine with 5-methyluridine
(m5U), 2-thiouridine (s2U) or pseudouridine (ψ) to
name a few. Especially m5C and ψ were reported to re-
duce the immunogenicity and even increase the transla-
tion efficiency of IVT mRNA [34].
After IVT the mRNA needs to be purified and its con-

centration needs to be determined. Special care must be
taken to eliminate aberrant, truncated and degraded
products. Purification for a clinical application is done
by performing chromatography-based techniques in
order to gain a clean mRNA devoid of shorter fragments
caused by abortive initiation or double-stranded (ds)
RNA caused by self-complementary 3’ extension, both a
common cause for impurities. Recently, an alternative
method for the purification of mRNA was presented,

based on adsorption to cellulose, in order to remove
dsRNA from the transcribed mRNA [35]. To note, it has
been demonstrated that successful mRNA translation
and protein expression can be achieved without using
any modified nucleotides and relies more on the purity
of the mRNA and the sequence composition of its single
parts [36].

Strategies for improving mRNA delivery
Different ways of vaccine delivery have been intensively
investigated for the efficient cellular uptake and biodis-
tribution (reviewed in [8, 37]). First, dendritic cell (DCs)
can internalize RNAs by endocytosis and this process
can be improved by electroporation [38]. External load-
ing of DCs facilitates efficient targeting of APCs, but
requires adoptive cell transfer and is time and labor-
intensive. Second, naked RNA can be injected with or
without a carrier. Carriers help to improve stability,
RNA uptake and translatability of vaccines. Several car-
riers have been developed [39]. Amongst those, lipid
nanoparticles (LNPs) have evolved to become the most
promising. These LNPs are non-viral carriers that are
easy-to-produce and considered non-toxic. They usually
contain cholesterol for stabilization, phospholipids to
form a lipid bilayer structure, a lipid-linked polyethylene
glycol that helps prolong the half-life of the composition
and, most importantly, the ionizable cationic lipid, which
improves the release of mRNA from the endosome to
the cytoplasm [8, 37]. LNPs markedly prolong and im-
prove protein expression in vivo, particularly after intra-
dermal injection [40]. Application of exogenous RNA
combined with a polymeric carrier was shown to activate
the innate immune system by generating a local immu-
nostimulatory environment [41], which consecutively
also modulates adaptive immune responses. Last, the
cationic peptide and immune activator protamine can be
used as a carrier [42] as well as physical methods such
as the gene gun, a microprojectile method [43], however
the latter with only limited access in humans.

Effects of exogenous mRNA on innate and adaptive
immunity
mRNA is a transient copy of the coding genomic infor-
mation and can be used for the expression of any thera-
peutic protein [44]. After the injection of an mRNA
vaccine, the encoded protein will be translated and
presented to the immune system. This process tightly re-
sembles the natural course of a viral infection and its
consecutive induction of a protective immune response.
Once the exogeneous mRNA enters the cytoplasm, it
will be processed similarly as endogenous mRNA.
Hence, delivery of exogeneous mRNA to the cytoplasm
is essential for antigen expression, but whether this is
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mediated through endosomal uptake and/or direct entry
through the plasma membrane is not entirely clear [45].
For the efficient induction of adaptive immune re-

sponses, the translated candidate antigens need to be
presented via MHC class I (MHC-I) and MHC class II
(MHC-II) molecules on APCs, mainly DCs [46–48].
APCs own the unique ability to cross-present extracellu-
lar antigens (which are normally presented via MHC-II
to CD4+ T cells) on MHC-I to CD8+ T cells [46, 48,
49]. The resultant cytotoxic T lymphocyte (CTL) induc-
tion is termed cross-priming [46]. Optimal CTL cross-
priming further requires, as stated above, cross-talk to
CD4+ T cells, which can recognize peptides presented
via MHC-II [50, 51]. Of note, all nucleated cells can po-
tentially process mRNAs and present derived peptides
on MHC-I, but only APCs are able to present peptides
on MHC-I and MHC-II, which is important for the in-
duction of CD4+ T cell and B cell as well as antibody
responses.
For efficient T cell activation several additional signals

are essential. Next to antigen recognition, a costimula-
tory signal is required to induce the immune response
[52] followed by consecutive cytokine production. Nat-
urally, DCs express these costimulatory signals (such as
B7 molecules) after sensing pathogen-associated molecu-
lar patterns (PAMPs), indicating microbial infection or
danger [53]. Pharmacologically, this can be achieved by
exploiting Toll-like receptor (TLR) ligands [54, 55].
TLRs belong to the group of pattern-PPRs, which are in-
herent to the innate immune system and whose function
is the detection of PAMPs. TLRs are therefore located at
different potential pathogen entry sites in the cell, e.g.
the plasma membrane or endosome. Induction of IFN1
by viruses or other pathogens is indispensable for innate
immune responses, confers anti-microbial activity [56]
and is mediated via the activation of PAMPs [57].
It is important to highlight that exogenous mRNA is

generally considered immunostimulatory, as it can acti-
vate innate immune cells via TLRs [8, 58], in particular
TLR3, TLR7 and TLR8 [59, 60] (Fig. 1a). As soon as
PRRs sense PAMPs an innate inflammatory response
(including IFN1) is initiated with the consecutive activa-
tion of the adaptive immune response [61]. More
precisely, TLR ligation leads to the production of proin-
flammatory cytokines, like TNF-α, IFN-α, IL-6,
interferon-γ-induced protein 10 (IP-10) and the induc-
tion of costimulatory molecules, especially on APCs such
as DCs [45, 62]. This finally results in the generation of
adaptive B and T cell responses [61, 63]. TLR7 is
expressed - amongst others - by B cells [64], macro-
phages and DCs [60, 65, 66] and can detect ssRNA [45].
In consequence, B cells are rapidly activated via the
MYD88/TLR7-dependent signaling pathway and there-
fore provide stimuli for the regulation of adaptive

immune responses induced by mRNA vaccines [45].
Moreover, TLR7 signaling augments production of pro-
inflammatory cytokines, increases antigen presentation
and improves memory B cell survival [45, 67].
In non-immune cells the cytoplasmic RIG-I-like recep-

tors RIG-I and MDA5 sense exogenous RNA and medi-
ate cytokine and chemokine production [24, 62, 68, 69],
which in turn recruits innate immune cells such as DCs
and macrophages to the site of mRNA injection [68]
(Fig. 1a). Although this early induced robust cytokine
production is warranted to enhance vaccine efficacy, dif-
ferent approaches in mRNA technology are pursued to
minimize IFN1 induction, because of serious systemic
side effects, such as autoimmunity. As an example, Miao
and colleagues [70] have proposed that mRNA formula-
tions exploiting an unsaturated lipid tail, a dihydroimida-
zole linker and cyclic amine head groups confer
profound activation of APCs via the intracellular stimu-
lator of interferon genes (STING) pathway, rather than
through TLRs, thereby reducing systemic cytokine ex-
pression and increasing anti-tumor efficacy. Taken to-
gether, innate sensing of exogeneous RNA might confer
stalled translation, degradation of RNA as well as con-
secutive minor antigen-specific immune responses [9],
pointing at the close communication between innate and
adaptive immunity after mRNA vaccination.
In order to induce adaptive immunity, specific anti-

gens need to be presented to immune cells (Fig. 1b).
mRNAs for cancer vaccines typically encode tumor-
associated antigens (TAAs) that are preferentially
expressed on cancer cells. To class these tumor-derived
antigens, they can be subdivided into: i.) tissue differenti-
ation antigens (e.g. CEA or MART-1, which can also be
expressed on healthy tissues), ii.) tumor germline (cancer
testis) antigens (e.g. NY-ESO-1 or MAGE-3), iii.) normal
proteins overexpressed by tumor cells (e.g. EGFR, Muc-
1, Her2/neu), iv.) viral proteins (e.g. EBV, HPV), and v.)
tumor-specific mutated antigens (e.g. Mum-1, β-Catenin
or CDK4) [6, 71, 72]. Genetic abnormalities are essential
drivers for tumor development [73–75]. Somatic muta-
tions may lead to the generation of neoepitopes, which
are tumor-derived peptides [76] that bind to the MHC
and thus can be recognized by autologous T cells. These
neoepitopes are considered optimal cancer vaccine can-
didates [73]. In line, it has been demonstrated that
neoepitope-specific T cells mediate clinical responses
after being adoptively transferred or after immune
checkpoint inhibition [77–80]. It is therefore not surpris-
ing that genetic cancer profiles containing a high burden
of neoepitopes predict a better response to CPI, at least
for melanoma, non–small cell lung cancer (NSCLC), and
mismatch repair–deficient colorectal cancers [81].
While peptide-based vaccination approaches require

to pick one single antigen restricted to a defined HLA
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molecule, mRNA vaccines allow the combination of
mRNAs encoding different antigens. It was shown that
mRNA-electroporated human DCs exhibited several
MHC-I and II-restricted peptides and induced a poly-
clonal CD4+ and CD8+ T cell response [82]. Of note,
CD4+ T cell help has been shown to be important for
efficient induction of CTL and B cell responses [50, 51]
and the presence of helper epitopes in the applied
mRNA can further improve the immune response. Inter-
estingly, the induction of CD4+ T cell responses after
cytosolic delivery of mRNA into DCs was shown to be
mediated by autophagy [83]. Furthermore, there is no
clear size limitation for the encoded protein as mRNAs
up to a length of 12 kilo base pairs have been used [37].
Last, mRNAs encoding for immunoregulatory proteins
can be included in the vaccine composition, further
improving its efficacy [84]. Taken together, vaccines in-
cluding two or more mRNAs encoding for different pro-
teins or long peptides can enable a broad and polyclonal
immune response. Restrictions to certain HLA mole-
cules and the risk of immune escape due to antigen loss
are avoided. Upon application of mRNA coding for epi-
topes deduced from mutated proteins, a strong antigen-
specific CD8+ T cell response is generated. Further, an
efficient and durable CD4+ T cells-mediated tumor
regression can be induced in vaccinated individuals.

Kreiter and co-workers [85] demonstrated that the ma-
jority of tumor-specific mutations (the “mutanome”) is
recognized by CD4+ T cells which confer strong antitu-
mor activity. This CD4+ T cell response consists primar-
ily of a robust T helper 1 (Th1)–biased immune
response alongside with IFN-γ production by CD4+ and
CD8+ T cells [85–87]. In regard to this strong Th1
response, different groups even tried to utilize mRNA
vaccines as tools to modulate Th-polarization. An ex-
ample for type 2 responses (which are characterized
by secretion of the cytokines IL-4, IL-5, IL-13 and
allergen-specific IgE) that are distinctive for allergies,
mRNA vaccines were applied in order to reduce aller-
gic T helper 2 (Th2) reactions [86].
Besides inducing sufficient T cell immunity, mRNA

vaccines are further required to induce neutralizing anti-
bodies, especially when targeting microbes. T follicular
helper (Tfh) cells are not only crucial to generate germi-
nal center (GC) responses, but also drive immunoglobu-
lin class switch, affinity maturation and durable B cell
memory responses. Although the exact mechanisms of
Tfh cross-talk are not entirely clear, these cells should
be activated by mRNA vaccines in order to generate
sufficient amounts of efficaciously working and durable
neutralizing antibodies [88]. Pardi and colleagues [40]
applied a nucleoside-modified purified mRNA

Fig. 1 Effects of mRNA vaccines on immunity. a Effects of exogeneous mRNA on innate immunity. Exogeneous mRNA can be sensed by TLRs in
the endosomes as well as receptors like RIG-I and MDA5 in the cytosol. dsRNA can induce a strong IFN1 response. Peptides derived from the
translated protein will be processed in the proteasome and presented on MHC-I and MHC-II molecules. b Effects of exogeneous mRNA on innate
immunity. APCs can present exogeneous antigens on MHC-II to CD4+ T cells and cross-present on MHC-I to CD8+ T cells. CD4+ T cells provide
help to B cells and CD8+ T cells. Finally, clonal expansion of antigen-specific B and T cells results in target cell elimination. c Risk of tumor
immune-evasion. Tumors are capable of creating an immunosuppressive micro-environment by recruiting myeloid-derived suppressor cells
(MDSCs), regulatory T cells, M2 macrophages and the production of immunosuppressive cytokines. Upregulation of exhaustion markers on T cells,
or antigen loss on tumor cells can further drive immune-evasion, exemplarily. CPI might help to regain immunosurveillance. BioRender was used
to create the figure
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encapsulated in lipid nanoparticles (mRNA-LNPs) en-
coding various viral surface antigens (of ZIKA virus,
HIV and influenza) intradermally and found that
these vaccines induced antigen-specific CD4+ T cell,
B cell and plasma cell responses as well as potent
neutralizing antibodies in mice and non-human pri-
mates. They concluded, alongside with others, that
nucleoside-modified mRNA-LNP vaccines are highly
efficient in inducing sustainable neutralizing antibody
production and that the introduction of noninflamma-
tory modified nucleosides into the mRNA is the es-
sential prerequisite [40]. Of note, the way of vaccine
administration determines the duration of antigen ex-
pression (intramuscular and intradermal longer versus
shorter after systemic application) and sustained anti-
gen availability resulted in high antibody titers as well
as GC-B cells and Tfh responses [89].

The location of vaccine administration impacts the
induced immune responses
In addition to the vaccine composition itself, also the way
and location of delivery affects its efficacy [8, 37] (Fig. 2).
Typically, vaccines are administered into the muscle or

into the subcutaneous fat tissue. Besides this subcutaneous
and intramuscular application, non-traditional routes such
as intranodal, intrasplenic, intradermal, intranasal, intra-
venous and intratumoral mRNA applications exist and
have been extensively analyzed for mRNA vaccination.
Depending on its administration route, the vaccine will be
taken up by very different cell types. The efficient delivery
of the corresponding antigen to the draining lymph node
is of high relevance. Secondary lymphoid organs are char-
acterized by the tight presence of many immune cells,
such as APCs and T cells, creating an ideal place for effi-
cient induction of adaptive immune responses. DCs are a
highly specialized, heterogeneous subset of APCs that link
innate sensing of pathogens with the activation of adaptive
immunity [90]. All DCs possess the unique ability to
process and present antigens.
Roughly, DC can be devided into two major subsets in

mice and men: i) plasmacytoid DCs (pDCs) and ii) mye-
loid/conventional DCs (mDCs) [91–95]. The latter can
further be devided into myeloid/conventional DC1
(cDC1) and myeloid/conventional DC2 (cDC2).
While cDC1 are located in murine lymph nodes, in

humans, XCR1 and C-type lectin domain 9 member A

Fig. 2 Different locations of mRNA injection can modulate the induced immune response. The advantages and disadvantages of different
delivery ways are listed. BioRender was used to create the figure
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(CLEC9A) DCs are potentially essential for vaccine-
induced immunity [50, 96]. Accordingly, if injected
directly into a lymph node, due to the high amount of
locally available immune cells, exogenous mRNAs will
primarily be taken up via micropinocytosis by APCs gen-
erating CD4+, CD8+ T and B cell responses. The same
holds true for ex vivo mRNA transfection of DCs
followed by later injection. In line, several preclinical
and clinical studies have used intranodal injection and
proofed that this is a very efficient way of RNA delivery
[97–99], also most likely due to close proximity to im-
mune cells. Similar results were obtained for an intras-
plenic application in mice [100].
Interestingly, also intranasal administration works

similarly, namely through rapid antigen-uptake by DCs.
The upper respiratory tract, including the nose, contains
mucosal tissue which functions as physical barrier and
first line of defense against invading pathogens [101].
The second line of defense consists of immune cells, es-
pecially dendritic cells, which form extensive networks
within the nasal epithelium [101]. Data from studies
with patients suffering from allergic rhinitis have proven
that DCs are capable of opening tight junctions which
enables them to access antigens beyond the epithelium
[101, 102]. Using intranasal application, an LNPs-
complexed mRNA vaccine reduced the onset of tumor
development and augmented overall survival in murine
tumor models of the OVA-expressing E.G7-OVA T-
lymphoblastic cell line [103]. This way of delivery could
be promising due to the advantages of its noninvasive,
easy-to handle nature [8, 103].
In the human skin, many APCs are present, in particu-

lar Langerhans cells in the epidermis as well as intersti-
tial DCs in the dermis [104]. Hence, after intradermal
application, mRNAs are taken up and expressed locally
at the injection site, by the many APCs in the skin [105],
but also, even predominantly, by non-immune cells [44].
Probst and colleagues reported that these were mainly
muscle cells, fibroblasts, and keratinocytes [44]. They
demonstrated that intradermal injection of a globin
UTR-stabilized (RNActive, CureVac GmbH) luciferase-
encoding mRNA into the ear pinna of mice showed a lu-
minescence peak after approximately 17 hours and was
undetectable after 3 days [44]. Injection of the exogen-
ous mRNA into human skin led to the expression of the
expected protein. This study amongst others [106–111]
provided the proof-of-concept that direct injection of
RNA accommodates have sufficient stability and that it
represents a feasible and efficient vaccination approach
[44].
Only few immune cells are present in skeletal muscles

[112, 113]. Next to the tissue-resident immune cells, cir-
culating immune cells will eventually pass by and
process and present the antigen at the site of

intramuscular administration [112]. Of note, this local
innate immune response and the magnitude of local in-
flammation will impact the consecutive adaptive immun-
ity [112]. For this reason, traditional vaccines contain
adjuvants that promote inflammation at the delivery site
facilitating immune cell recruitment and activation
[112].
Hence, after intramuscular vaccination of mRNA

vaccines, mRNA will primarily be processed by local
myocytes, but APCs will eventually pass through and
induce antigen-specific CD8+ T cells.
Intratumoral injections have been assessed in several

studies. To this end, the immune cell composition
within a tumor is of high importance. Some so-called
“hot” tumors are characterized by a high infiltration of
immune cells and are associated with higher treatment
responses and improved survival [114]. The magnitude
of infiltrating immune cells therefore increases or limits
the efficacy of currently available immunotherapies.
Many approaches have been tested to switch “cold” to
“warm” tumors. Lately, Newman and colleagues have
even demonstrated that application of the seasonal influ-
enca vaccine into a tumor facilitates the shift towards a
warm tumor [114]. In line with this, direct injection into
the tumor may enable a fast activation and expansion of
possibly pre-existing antigen-specific T cells. However,
many of these approaches use mRNAs encoding immu-
nostimulatory proteins, and not TAAs [8, 66, 115]. Sup-
porting this, the intratumoral application of TriMix
mRNA not coding for TAAs led to the activation of
CD8a+ DC, T cells and reduced tumor growth in vari-
ous murine tumor models (E.G7-OVA, P815, A20, and
TC-1) [116, 117].
Last, mRNAs can be injected intravenously, however

several risks and hurdles have to be overcome. The ag-
gregation with serum proteins and immediate degrad-
ation [8] necessities the packaging into carrier molecules
in order to improve mRNA uptake, translatability and
stability [8, 39, 118–120]. Moreover, the biodistribution
of mRNA vaccines after intravenous injection is critical
[8]. Exemplarily one study reported that their cationic
LNP-based complexing vaccine mainly was detected in
the liver after systemic administration [121]. Under cer-
tain conditions it therefore appears attractive to trans-
port the translated protein into specific subcellular
compartments via addition of targeting sequences, or by
addressing specific receptors on DCs. Using a DNA (and
here not RNA) vaccine, this could be achieved by using
a DEC-205 fusion protein [122, 123]. Another very ap-
pealing approach is to target DCs using intravenously
administered RNA-lipoplexes based on lipid carriers by
optimally adjusting net charge [124]. It was previously
shown that negatively charged particles resulted in traf-
ficking of DCs into secondary lymphoid tissues and bone
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marrow where they induced robust IFN1 and a strong
tumor-specific immune response [124]. The authors
were the first to develop this novel class of systemically
administered nanoparticulate RNA vaccines, which en-
able an optimal biodistribution to APCs into secondary
lymphoid organs [124]. In contrast to other models, no
functionalization of nanoparticles with molecular ligands
that target DCs are necessary [8]. Instead, precise DC
targeting is achieved using well-known lipid carriers and
solely by adjusting negative net charge of the nanoparti-
cles [124].
After systemic vaccine administration cells that

engulfed the exogenous mRNA will circulate and even-
tually arrive in lymph nodes, where the induction and
activation of immune responses can take place. In drain-
ing lymph nodes, activated immune cells such as B cells
accumulate [68], help promote DC maturation by
glycosylation-dependent interaction and boost antigen
presentation [68, 125]. The increased production of pro-
inflammatory cytokines such as TNF-α as well as the
augmented expression of matrix metalloproteinases on
the membrane of migrating DCs facilitates the traffick-
ing of DCs toward the draining lymph nodes [126].
Lastly, the upregulation of activation markers such as
CD69 on immune effector cells within the lymph nodes
combined with the present pro-inflammatory cytokines
will support effective immune priming [127].
Overall, these observations accentuate that direct

transfection of APCs with mRNA is not an indispensable
prerequisite for the effective induction of immune re-
sponses [45], and that systemic injections are, in
principle, feasible. However, direct mRNA injection into
secondary lymphoid tissue facilitates a targeted antigen
delivery to APCs without the necessity for DC migration
[8]. Intramuscular and intradermal vaccine administra-
tion results in a more persistent protein expression. In
one study the half-life of mRNA-encoded firefly Lucifer-
ase was three times longer after intradermal in contrast
to intravenous injection [121].

Modulation of mRNA immunogenicity
While improved immune activation can be of interest in
vaccination strategies and might even replace adjuvant
application, innate immune sensing can also create an
unfavorable environment for the translation of mRNA
vaccines and thus limit antigen expression [45, 128,
129]. Some naturally occurring modified nucleosides
have been reported to diminish TLR activation when in-
corporated into the transcript [63]. One such example
are pseudouridines, which aim at suppressing RNA-
mediated immune activation while improving the trans-
lational capacity and stability of the RNA [128].
Although this process significantly improves expression
of intra- and extracellular proteins and reduces the

immune response, a residual induction of IFN1 and
proinflammatory cytokines remains [128]. In order to
achieve high translatability and reduced RNA sensor
activation, contaminants from IVT mRNA prepara-
tions have to be removed. Phage polymerase, which is
used to generate mRNA, also generates multiple con-
taminants such as short RNAs or dsRNA. While short
RNA moieties can be removed using polyacrylamide
gel electrophoresis [130], contaminants in longer
mRNA preparations can only be removed by chroma-
tography, such as high performance liquid chromatog-
raphy (HPLC) [129]. Removal of the latter is essential
because dsRNA represents a potent PAMP that is
sensed by PRRs as described above [8] and induces
IFN1 production. This can, in turn, activate protein
kinase R and 2′–5′-oligoadenylate synthetase and re-
sult in translation inhibition and RNA degradation
[112, 131]. Hence, mRNA purification with HPLC fa-
cilitates excellent translatability without mediating
IFN1 and proinflammatory cytokine responses [129].
In summary, efficient protein expression in DCs with-
out deleterious systemic inflammation can be achieved
by introducing modified nucleosides, complexing the
mRNA with carrier molecules [107, 132] and applying
purification methods such as polyacrylamide gel elec-
trophoresis and HPLC [129].
While a detrimental systemic immune activation needs

to be avoided, mRNAs coding for T cell molecules that
mediate T cell activation and Th-1 responses can be
exploited as components of the vaccines. One example
is TriMix, which combines mRNAs encoding for three
different immune-stimulating proteins, namely CD40
ligand (CD40L), CD70 and constitutively active TLR4 [8,
117, 133]. TriMix mRNA combinations have made their
way into several vaccination trials due to improved DC
activation and enhanced induction of CD8+ T cell re-
sponses [133].
Furthermore, the CureVac company has developed

RNActive® vaccines with so-called self-adjuvant activ-
ity. They contain only naturally occurring nucleotides
and are complexed with protamine [134, 135]. This
co-delivered RNA particularly boosts the B and T cell
response, including T effector and memory responses,
and the expansion of subpopulations such as Th1 and
Th2 cells and GC B cells [134]. In preclinical models
RNActive® vaccines efficiently protected against differ-
ent influenza strains and have shown anti-tumor
effects [68, 69, 134–137].
In addition, cationic lipids, which are considered to in-

crease RNA uptake and facilitate endosomal escape
[138], can increase the adjuvant activity of mRNAs
[139]. In line, the combination of a synthetic mRNA se-
quence with a polymeric carrier augments the adjuvanti-
city of distinct subunit vaccines [41].
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mRNA co-delivered with cationic lipids induces a
IFN1-mediated innate immune and CD8+ T cell re-
sponses and promotes cytolytic effector functions in
murine tumor models. The absence of IFN1 and experi-
ments in IFNAR−/− mice [62] showed impaired efficacy
of the vaccine [124] stating once more that the role of
IFN1 is still not entirely clear in the context of mRNA
vaccination. IFN1 has been associated with reduced ex-
ogenous RNA replication and expression and the
promotion of T cell exhaustion [8]. Further studies in-
vestigating the detailed mechanism of action of IFN1 on
the induced immune response will need to clarify these
open questions. Nevertheless, it must be pointed out
that immunogenicity was less pronounced in humans
than it was expected according to most previous animal
experiments [140, 141].

Preclinical advances and clinical results of mRNA
vaccinations against cancer
In contrast to prophylactic vaccination approaches for
infectious diseases, cancer vaccines are usually applied in
a therapeutic setting. They predominantly aim at indu-
cing an efficient CD8+ T cell response against tumor-
derived antigens that will stop or at least reduce growth
of established tumors [142], while humoral immunity is
probably less important. mRNA vaccination was first de-
scribed as potential anti-tumor treatment by Conry and
colleagues in 1995 [143] who constructed mRNA tran-
scripts encoding luciferase and human carcinoembryonic
antigen (CEA). The authors postulated that their strategy
might be advantageous to induce an immune response
to a proto-oncogene or growth factor that is generally
associated with malignant transformation [143]. Almost
contemporaneously, it was demonstrated that DCs trans-
fected with mRNA encoding TAAs or total mRNA that
was subcutaneously administered into tumor-bearing
mice induced T cell immunity conferring growth inhib-
ition of established tumors [144]. Gilboa and his co-
workers were the first to demonstrate that DCs can
utilize mRNA encoding TAAs to induce a protective
anti-tumor immunity [145, 146]. Since then, an arma-
mentarium of preclinical and clinical studies has been
initiated and provided proof-of-concept that mRNA vac-
cination can efficiently induce immune responses that
eliminate cancer cells. Novel approaches of delivery and
complexing of the vaccine as well as increasing know-
ledge of mechanisms involved in innate and adaptive im-
mune sensing have paved the way to these successful
clinical trials. Different methods of mRNA vaccination
against cancer have been pursued: basically, mRNA vac-
cines against tumors are either generated i) using ex vivo
loaded or electroporated DCs or ii) by direct injection of
mRNA with or without a carrier. When DCs are used,
these first have to be isolated or in vitro generated and

then transfected with the mRNA encoding the TAA(s)
followed by re-transfusion into the patient. Transfection
is usually performed using electroporation [147] and im-
munotherapy with mRNA-electroporated DCs was dem-
onstrated to be safe in cancer patients [148, 149]. DCs
electroporated with mRNA encoding ovalbumin or
tumor-derived mRNAs generated strong tumor-specific
immune responses [144] in different murine melanoma
models and vaccination trials. The efficacy of these vac-
cines could be further augmented by the addition of
mRNAs encoding immune regulatory proteins such as
CD83 [150], 4-1BB ligand, cytokines or IL-12 [7, 84,
151], exemplarily. In line with this, electroporation of
DCs with mRNAs together with the aforementioned
immunostimulatory TriMix increased the efficacy of the
vaccine and improved the induction of anti-tumor medi-
ated immune responses in several pre-clinical studies
due to upregulation of costimulatory molecules on DCs
and an enhanced stimulatory capacity [117, 135, 152]. In
addition, the generated CD4+ T cells showed a higher
activation status and demonstrated a pronounced shift
from Tregs to Th1-like phenotype [116, 117, 153]. In
humans, vaccination with mRNA coding for melanoma-
associated antigens combined with TriMix led to im-
pressive tumor regression of advanced-stage melanomas
[154]. These first reports were followed by several clin-
ical trials applying DC-based mRNA vaccines in cancer
patients (reviewed in [133, 155]) and are currently ad-
vancing to combined treatment approaches using
vaccination in addition to chemotherapy, radiation or
checkpoint blockade (Tables 1 and 2). Some of these
studies have yielded durable tumor growth inhibition
[154]. Although these DC-based approaches are effica-
cious due to the direct targeting of DCs as most power-
ful APCs, they are also complex and cost-intensive.
In contrast, direct injection of naked or complexed

mRNA is considered to be a fast and feasible approach.
A variety of studies in different tumor entities has
proven that direct RNA injection is efficacious and that
the RNA is not degraded by RNAses before an efficient
translation into a protein can take place (Tables 1 and
2). Exemplarily, a phase I/II trial tested the repeated
intradermal application of an mRNA vaccine encoding
six different TAAs (MUC1, CEA, Her2/neu, telomerase,
survivin, MAGE-A1) in 30 metastatic RCC patients
[111]. Long-term results after 10 years stated that
mRNA vaccination is safe and efficacious [110]. It de-
layed tumor growth and increases survival, which was
tightly associated with the detected immune responses
against the TAAs [110]. Another study investigated an
intravenously administered liposomal-complexed RNA
(RNA-LPX) vaccine (melanoma FixVac BNT111) encod-
ing four non-mutated, melanoma-associated antigens in
patients with advanced, unresectable melanoma after
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Table 1 Clinical results from studies using mRNA vaccines in tumor therapy (extract)

Mrna encoding for Vehicle Entity Outcome Reference

WT1 DC AML Induction/maintenance of CR. Clinical responses correlated with
vaccine-associated increases in WT1-specific CD8+ T cells

NCT00834002
[156]

WT1 DC Solid tumors Unknown; in malignant pleural mesothelioma undefined clinical
benefit, vaccine-elicited immunity was obtained in 9/10 pat.

NCT01291420
[157]

WT1 DC AML Prevent or delay relapse in 43% of patients with AML in
remission after chemotherapy

NCT00965224
[158]

WT1/PRAME DC AML Specific T cell responses in 4/5 patients; CR after 21,25,33 months
in 3 pat.

[159]

WT1/PRAME/cmvpp65 DC AML 2/7 pat. Exhibited responses to PRAME and WT each. 7/10
vaccinated pat. are still alive, and 5/10 are in CR, with an
observation period of up to 840 d

NCT01734304
[160]

hTERT DC AML Maintenance of CR: 11 pat. (58%) developed hTERT-specific T-cell
responses; median follow-up of 52 months, 58% of pat. In CR (11
of 19 patients) were free of disease recurrence

NCT00510133
[161]

Whole tumor RNA DC Pediatric
brain cancer

2 of 7 pat. SD clinical and 1 of 7 showed a PR [15]

Tumor RNA plus synthetic
CD40L RNA

DC Metastatic
RCC

In combination with sunitinib:
13 pat. (62%) experienced clinical benefit (9 PR, 4 SD);

NCT00678119
[162]

NY-ESO-1, MAGE-A3, tyrosin-
ase and TPTE

RNA-lipoplexes
(iv)

Melanoma Ifnα and strong antigen-specific T-cell responses were induced,
SD/PR

[124]

MAGE-C1, MAGE-C2, NY-
ESO-1, BIRC5, 5T4

Vaccine
containing self-
adjuvanted mRNA

NSCLC Antigen-specific immune responses against ≥1 antigen were
induced in 65% of pat. ≥ 2 fold increase of pre germinal center
B cells;
no objective clinical responses follow up trial terminated due to
low recruitment

NCT01915524
[163]

PSA, PSCA, PSMA, and STEA
P1

Vaccine
containing self-
adjuvanted mRNA

PCA 26/33 evaluable pat. Treated developed an immune response,
directed against multiple antigens in 15 out of 33 pat. One pat.
Showed a confirmed PSA response. In the subgroup of 36
metastatic patients, the Kaplan-Meier estimate of median overall
survival was 31.4 months

EudraCT number
2008-003967-3
7[164]

Multiple TAAs DC PCA The addition to of docetaxel to dcvac was safe. Immune
responses were detected in approx. Half of the pat. No effect on
PFS and DSS

[165]

Autologous tumor-mRNA DC Melanoma A tumor-specific immune response was demonstrated in 16/31
pat. The response rate was higher after intradermal than intrano-
dal vaccination (80% vs. 38%). Immune responders had improved
survival compared to non-responders (median 14 mo vs. 6 mo; p
= 0.030), and all 8 pat. Surviving >20 mo were immune
responders.

NCT01278940
[166]

Cancer stem cell mRNA DC Glioblastoma An immune response induced by vaccination was identified in
all 7 pat. Compared to matched controls, progression-free sur-
vival was 2.9 times longer in vaccinated patients (median 694 vs.
236 days, p = 0.0018, log-rank test).

[167]

CEA DC CRC All patients showed T-cell responses against the control protein
(keyhole limpet hemocyanin) upon vaccination. CEA peptide-
specific T-cells were detected in 8 /11 pat. In the peptide group,
but in 0/5 patients in the RNA group.

NCT00228189
[168]

Tyrosinase and gp100 DC Melanoma One mixed tumor response and two durable tumor stabilizations
were observed among 8 pat. With evaluable disease at baseline

NCT01530698
[169]

Total tumor RNA Naked Melanoma Increase in antitumor humoral immune response was seen in
some patients after i.d. Injection of naked mRNA. However, a
demonstration of clinical effectiveness of direct injection of
mRNA for antitumor immunotherapy was not shown in this
study and must be evaluated in subsequent trials.

[106]

Melan-A, gp100, Tyrosinase,
Mage-A1, Mage-A3, and sur-
vivin in 21

Protamine-stabil.
mRNAs

Melanoma A reproducible increase of vaccine-directed T cells was observed
in 2/4 immunologically evaluable patients. 1/7 pat. With measur-
able disease showed a complete response. In conclusion, we
show here that direct injection of protamine-protected mRNA is
feasible and safe

NCT00204607
[170]
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CPI therapy [171]. The authors clearly demonstrated
that the vaccine alone or in combination with CPI medi-
ated durable objective responses in the included patients
and that the responses were closely associated with
strong CD4+ and CD8+ T cell responses against the
vaccine antigens [171].
To name two last examples, seven patients with locally

advanced and 39 patients with metastatic NSCLC re-
ceived five intradermal applications of CV9201, an
RNActive-based vaccine encoding five NSCLC antigens
(NY-ESO-1, MAGE-C1/2, survivin, trophoblast glyco-
protein (5T4)) [172]. 63% of these patients developed
antigen-specific immune responses against at least one
antigen and 60% showed an increase of activated IgD+
CD38high B cells. 31% of these patients had stable
disease, while the other two third progressed [172]. A
similar study aiming to improve anti-tumor immunity
examined vaccination with CV9202 combined with local
radiation in patients with advanced NSCLC [173].
CV9202 is an RNActive-based vaccine that encodes six
NSCLC TAAs (NY-ESO-1, MAGE-C1, MAGE-C2, 5T4,
survivin, and MUC-1). Antigen-specific cellular and
humoral immunity was increased in contrast to baseline
in the majority of patients. One patient treated with the
vaccine, radiation and chemotherapy experienced a partial
response (PR), 46.2% showed a stable disease (SD) [173].

Strategies to improve vaccine-induced anti-cancer
immune responses
Most cancer vaccine trials have limited success in pa-
tients with advanced disease or therapy-refractory
tumors [174, 175]. Most commonly, efficient T cell
induction is the major hurdle. TAAs are non-mutated
self-antigens which commonly induce central T cell
tolerance [176].
A variety of techniques exist that ameliorate mRNA

delivery, composition, immunogenicity or translatability
in general. However, several specific considerations for
immune responses against tumors need to be consid-
ered. These include the optimal timing of vaccine appli-
cation (adjuvant vs. advanced stage disease), the choice
of the target antigen, the manipulation of the tumor
micro-environment and the potential combination with

other cancer treatments that might cause additive or
even synergistic anti-tumor effects.
Anti-cancer vaccines are usually applied when the

tumor has reached a reasonable size or has already metas-
tasized. These cancer cells already interacted for a longer
time with the immune system and may have developed
cell-intrinsic or extrinsic mechanisms that help them to
escape from the immune system and diminish the thera-
peutic effect of the vaccine-induced anti-cancer immunity
[177]. mRNA application in earlier stages of disease, such
as during adjuvant therapy could therefore improve the ef-
ficacy of vaccine treatments. One recent study analyzed in
a randomized phase II clinical trial the effect of a treat-
ment with autologous DCs co-electroporated with mRNA
coding for TriMix and mRNA encoding one of four TAAs
(MAGE-A3, MAGE-C2, tyrosinase, or gp100) linked to an
HLA class II targeting signal [152, 178]. These melanoma
patients were not allowed to have any evidence of disease
following the resection of macro-metastases. This adju-
vant intradermal/intravenous treatment was well-tolerated
and improved the 1-year disease-free survival rate [152].
The authors pointed out that a cotreatment with CPI or a
targeted therapy might further improve survival of pa-
tients with high risk of recurrence [152].
The interindividual heterogeneity between cancer pa-

tients can hinder efficient immunity induction and signifi-
cantly differentiates the immune response against a
microbe or against a tumor. Tumors accumulate up to
thousands of genomic mutations of which only a fraction
results in the generation of novel epitopes that can be rec-
ognized by the immune system and confer inhibition of
tumor growth [179]. Advances in next generation sequen-
cing (NGS) technology allows to decipher the genome, ex-
ome and transcriptome of an individual cancer patient [12,
180]. This new-gained knowledge about the heterogeneity
of different tumors and neoepitopes of specific T cells has
greatly advanced the progress of personalized cancer ther-
apy. In 2012, the Sahin group proposed that the “muta-
nome” could be exploited for tumor vaccination [180, 181].
For a first preclinical trial of “mutanome engineered RNA
immunotherapy” (MERIT) the C57BL/6-derived B16F10
melanoma cell line was used, which has in contrast to
healthy cells several hundreds of targetable mutations.

Table 1 Clinical results from studies using mRNA vaccines in tumor therapy (extract) (Continued)

Mrna encoding for Vehicle Entity Outcome Reference

MUC1, CEA, Her2/neu,
telomerase, survivin, MAGE-
A1

I.d. mRNAs Metastatic
RCC

Median survival of 24.5 mo (all patients) and 89 mo (favorable
risk patients). Long-term survivors displayed immunological re-
sponses to the applied antigens while no patient without detect-
able immune response had survived more than 33 mo.

[110, 111]

4 Melanoma associated non-
Mutated antigens

I.v. mRNAs Melanoma
after CPI

Lipo-MERIT trial: melanoma fixvac, alone or in combination with
CPI, mediated durable objective responses in melanoma pat.
After CPI treatment. Responses are closely associated with strong
CD4+ and CD8+ T cell responses against the vaccine antigens.

NCT02410733
[171]

Abbreviation: RCC renal cell cancer, CRC colorectal cancer, PCA prostata cancer
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Table 2 Currently recruiting studies using mRNA vaccines in tumor therapy

mRNA encoding for Vehicle Entity Concept Reference

OX40L, IL-23, and IL-36γ LNP Dose escalation: r/r solid tumor
or lymphoma
Dose expansion: triple negative
BC, HNSC, NHL and urothelial
cancer

mRNA-2752 +/- durvalumab
(phase 1)

NCT03739931

individually designed mRNA
coding for tumor neoantigens

LNP melanoma mRNA4157 +/- pembrolizumab
(phase 2)

NCT03897881

individually designed mRNA
coding for tumor neoantigens

LNP solid tumors: pat. with resected
solid tumors and in combination
with pembrolizumab in pat. with
unresectable solid tumors

mRNA4157 +/-pembrolizumab
(phase 1)

NCT03313778

KRAS G12D, G12V, G13D, and
G12C

LNP KRASmut NSCLC, CRC or PancCA mRNA-5671/V941+/-
Pembrolizumab
(phase 1)

NCT03948763

NY-ESO-1, MAGE-C1, MAGE-C2,
survivin, 5T4, and MUC-1

Protamine NSCLC mRNA vaccine BI 1361849 + durvalumab
+/- tremelimumab
(phase 1/2)

NCT03164772

CD70, CD40L, and constitutively
active TLR4

Naked mRNA
encoding DC
activating proteins

Early breast cancer and
accessible tumor lesions

TriMix vs placebo
(phase 1)

NCT03788083

W_ova1 Vaccine (includes 3 OC
TAA RNAs)

Liposome Ovarian cancer Only treatment arm
mRNA + chemotherapy
(phase 1)

NCT04163094

tyrosinase, gp100, MAGE-A3,
MAGE-C2, and PRAME + CD70,
CD40L, and constitutively active
TLR4

LNP Melanoma ECI-006 intranodal injection with
different doses and frequencies
following surgical resection, and in
patients with stable disease after
standard of care immunotherapy
treatment
+ anti-PD1 (cohort 2)

NCT03394937

Wt1 DC AML Autologous WT1 mRNA electroporated
DCs during 2 years with repeated
injection vs no intervention
(phase 2)

NCT01686334

5 antigens expressed in de
novo and metastatic prostate
cancer

liposomes PCA W_pro1 in patients with metastatic
castration resistant prostate cancer
+/- Cemiplimab and/or goserelin
acetate in patients with high-risk,
localized prostate cancer

NCT04382898

survivin, hTERT and autologous
tumor stem cells derived from
tumorspheres

DC Glioblastoma Trivalent (temodal/irradiation
+-vaccination) in primary treated
patients with IDH wild-type,
MGMT-promotor methylated
glioblastoma
(phase 1/2)

NCT03548571

PD-L1/L2-silenced, MiHA mRNA DC Hematological malignancies
after allo HSCT

Vaccination with PD-L1/L2-silenced
minor histocompatibility antigen-
loaded donor DC vaccines to boost
graft-versus-tumor immunity after
allogeneic stem cell transplantation
(a Phase I/II Study)

NCT02528682

WT1 DC Malignant pleural
mesothelioma

DC vaccination + chemotherapy NCT02649829

WT1 DC Glioblastoma Newly diagnosed glioblastoma when
autologous WT1 mRNA-loaded DC
vaccination is added to adjuvant
temozolomide maintenance treatment
following (sub)total resection and
temozolomide-based chemoradiation

NCT02649582
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Amongst these, 16 of 50 were recognized by T cells and
only a fraction of these were associated with cancer growth
in vaccinated mice [181]. A first-in-human clinical study
followed on the basis of these promising results and aimed
to target multiple immunogenic tumor mutations of each
individual patient. The group applied NGS-based mutation
identification coupled with bioinformatic target selection
for prediction of an effective therapeutic vaccine [10]. The
advantage of this or similar approaches is the personalized
selection of individual immunogenic mutations of a pa-
tient´s tumor for the construction of a personalized,
unique vaccine containing RNAs that encode mutation-
coding sequences [10, 182–184].
The cross-talk of the tumor microenvironment with im-

mune and non-immune cells can significantly impact
tumor cell growth. Most tumors strive to evade the im-
mune system by expressing immunosuppressive proteins
on the surface (e.g. programmed death ligand 1 (PD-L1),
osteoactivin), by producing immunosuppressive cytokines
(e.g. IL-10) and chemokines and by recruiting immunosup-
pressive cells such as regulatory T cells, M2 macrophages
and myeloid-derived suppressor cells (Fig. 1c). This hostile
tumor microenvironment results in anergy and exhaustion
of T cells promoting prolonged tumor cell survival [177,
185, 186]. Thus, an ideal tumor vaccine would improve the
local immune cell composition and restore tumor immu-
nosurveillance [110, 177]. CPI have been shown to impact
on the architecture of the tumor microenvironment and
exhibit the potential to reinvigorate and expand pre-
existing T cells or induce “new” anticancer immune re-
sponses. Of note, a high infiltration with (pre-existing)
CD8+ T cells is associated with an improved outcome and
a higher chance to respond to CPI [177, 187, 188]. It has
further been shown for mRNA vaccination approaches that

the survival across different cancer types correlates with
the induction of T cells against predicted neoepitopes
[189]. These neoepitope-specific T cells are tightly associ-
ated with the response to CPI treatment [190, 191]. CPI
such as monoclonal antibodies against cytotoxic T lympho-
cyte antigen 4 (CTLA-4), programmed death 1 (PD-1) and
PD-L1 are able to at least partly remove immunosuppres-
sion [177, 188, 192]. Generally, CPIs are capable of main-
taining a once induced immune response and prevent up-
regulation of T cell exhaustion markers making them a
promising combination partner for mRNA vaccines [193].
Exemplarily, a combination of CPI with an mRNA vaccine
encoding TRP2 elicited a robust TAA-specific immune re-
sponse in a C57BL/6 mouse model of B16F10 melanoma
leading to inhibition of tumor growth [193]. The co-
delivery of PD-L1 siRNA and mRNA vaccine in this model
downregulated PD-L1 in antigen-presenting DCs resulting
in increased T cell activation and proliferation [193]. In line
with this work, many of the currently recruiting mRNA tri-
als against cancer use protocols that combine mRNAs to-
gether with CPI (shown in Table 2 (grey shaded)). Hence,
neoantigen-targeting immunotherapies, preferentially in
combination with checkpoint blockade, but also radiation
or chemotherapy might change the landscape of anti-
cancer treatments. Finally, additional options for improving
patient´s survival could be achieved by utilizing combina-
torial approaches that include specific adjuvants or activat-
ing monoclonal antibodies (4-1BB, ICOS, CD40) in the
therapeutic regime [177, 194] .

mRNA vaccine development against microbes in the
context of the ongoing SARS-CoV2 pandemic
Vaccine development has been in the spotlight during
the ongoing SARS-CoV2 pandemic. Never before has

Table 2 Currently recruiting studies using mRNA vaccines in tumor therapy (Continued)

mRNA encoding for Vehicle Entity Concept Reference

pp65-lysosomal-associated
membrane protein

DC Glioblastoma pp65-shLAMP mRNA DCs with
GM-CSF + Td or pp65-flLAMP mRNA DC
with GM-CSF + Td or unpulsed PBMC
and saline + temodal
(phase 2)

NCT02465268

pp65-lysosomal-associated
membrane protein

DC Glioblastoma Human CMV pp65-LAMP mRNA pulsed
autologous DCs
Preconditioning with unpulsed DC vs. Td
toxoid vs. varlilumab

NCT03688178

Total tumor mRNA DC Glioblastoma TMZ during RT and TTRNA pulsed
DC´s +Td+GMCSF during and after
maintenance cycles of dose-intensive
TMZ vs. focal radiotherapy alone and
TTRNA pulsed DC´s +Td+GMCSF without
maintenance DI TMZ

NCT03396575

Up to 20 neoantigens
(individualized)

LNP Solid tumors RO7198457 +- Atezolizumab
(phase 1)

NCT03289962

Up to 20 neoantigens
(individualized)

LNP Melanoma RO7198457 +- Pembrolizumab
(phase 2)

NCT03815058
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such a tremendous audience participated in every single
step of vaccine design. Although mRNA was historically
considered instable and immunogenic, mRNA vaccines
have become the favored treatment option for infectious
diseases. This is mainly due to their versatile nature,
their safety as well as relatively simple and fast manufac-
turing process. The latter, in particular, becomes import-
ant in a worldwide pandemic, where short development
and design times and a rapid production of millions of
vaccines under good manufacturing practice conditions
are indispensable. mRNA vaccines against infectious dis-
eases have been shown to induce strong CD4+ and
CD8+ T cell responses [8, 134, 195, 196] as well as neu-
tralizing antibodies after only one or two low-dose im-
munizations in animals [134, 197–202].
Concerning the way of delivery, mRNA-based DC vac-

cines can be generated through ex vivo loading of DCs
and have demonstrated efficient T and B cell induction
in HIV and CMV trials [37, 203–209]. However, ex vivo
loading of DCs is time-consuming and expensive and
therefore not suitable as rapid “off the shelf” vaccination
during a pandemic. In another approach, mRNAs are
designed to amplify themselves. Generally, these self-
amplifying mRNA vaccines are based on a virus, such as
the alphavirus [210]. Alphaviruses can, like many other
viruses, mediate functions that antagonize the IFN re-
sponse. This viral approach ensures that all the genes
encoding the replication machinery of the RNA remain
untouched, while the genes encoding the structural pro-
teins of the virus are replaced by the target antigen [8].
The efficacy of these vaccines is further improved by
RNA-complexing agents and the fact that many self-
amplifying mRNAs display adjuvant activity themselves
[8]. Although this adjuvant activity is rather appreciated
in terms of improved immune responses, it is also con-
sidered critical due to potential uncontrollable immune
reactions, which may limit its repeated use.
Direct injection of non-replicating mRNA is an at-

tractive vaccination approach also against infectious dis-
eases. This method is as aforementioned cheaper and
easy to perform especially in settings with limited re-
sources [8]. To name only a few examples of mRNA
studies exploiting direct injection, the intradermal
application of uncomplexed mRNA encoding several in-
fluenza virus antigens together with a protamine-
complexed RNA adjuvant was shown to be efficient and
protected mice from lethal virus challenge [137]. Intra-
venous vaccination of mice with lipid-complexed mRNA
encoding influenza virus HA activated T cells after one
single injection [124]. In line, a LNP-complexed
nucleoside-modified non-FPLC-purified mRNA vaccine
against influenza HA 10 neuraminidase 8 (H10N8) and
H7N9 influenza virus strains proved to generate protective
immune responses in several mammals and humans [37,

140, 141]. Efficient inhibition of haemagglutination and
production of neutralizing antibodies was observed here.
General side effects included local reactions at the injection
site such as redness, pain and swelling. Systemic symptoms
covered headaches, fatigue, chills and cold-like symptoms
[140]. Alberer et al. recently demonstrated a first-in-
human proof-of-concept clinical trial in healthy adults
using a prophylactic mRNA-based vaccine encoding rabies
virus glycoprotein, which induced humoral immunity
when administered with a needle-free device [141]. Taken
together, naked mRNA injection seems to be a feasible and
broadly applicable approach for the protection against in-
fectious diseases. As mentioned above, vaccine quality was
improved by nucleoside modification or complexed
mRNAs, and further shaped/influenced by the choice of
delivery route and format, such as LNP vaccines, specific
formulation components and the sequence selection.
Although no mRNA vaccine had been approved until

end of 2020, the above listed developments paved the way
for the rapid design of the recently introduced COVID19
vaccines. They were developed by several biotech com-
panies and most of them use mRNA compositions. As of
December 2020, a total of two mRNAs vaccines from
BioNTech/Pfizer and Moderna are approved. BioNTech/
Pfizer compared in their initial trials several RNA-based
COVID19 pandemic vaccine candidates in clinical studies
in Germany and the US [211–213]. Not all technical de-
tails of the vaccine compositions have been published yet,
but it is known that they use LNP–formulated nucleoside-
modified RNA [213]. The most promising vaccine candi-
dates were BNT162b1 which encodes the SARS-CoV-2
receptor–binding domain [213] and BNT162b2 which en-
codes a modified version of the SARS-CoV-2 full-length
spike protein [212, 213]. This modification helps to mimic
the intact virus and aims at improving virus-neutralizing
antibody responses [212]. BNT162b1 induced strong
CD4+ T helper (Th1) cell responses and CD8+ T cells
that efficiently produced IFNγ and IL-2 [11], thus provid-
ing both humoral and cell-mediated antiviral immunity.
BNT162b2 was reported to show a good balance of effi-
cacy and safety at the relatively low dose of 30 μg [211,
213] and therefore advanced to the international phase 2–
3 clinical trials [212, 213]. About 44,000 adults were sub-
jected to two intramuscular injections of 30 μg of
BNT162b2 21 days apart (NCT04368728) [212] This regi-
men conferred 95% protection against Covid-19 [212].
The titers of SARS-CoV-2–neutralizing antibodies resem-
bled or exceeded those found in patients that had recov-
ered from a SARS-CoV-2 infection [11, 211–213]. Of
note, the immunogenicity of the vaccine decreased with
age, which is not surprising and most likely associated
with immunosenescence [213, 214].

In another, very recent study, BNT162b2 protected
macaques from SARS-CoV-2 challenge, indicating that
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the vaccine not only induces potent cellular and
humoral immune responses, but also avoids develop-
ment of a severe course of disease [215].
Although the efficient induction of humoral and cell-

dependent immunity by these vaccines is encouraging,
many open questions remain. We are currently just begin-
ning to understand the role of the immune system in
COVID19, especially during a severe course of disease.
We do not know, yet, how long a vaccine-induced im-
mune response will persist and how efficient it will protect
against COVID19 in general and against potentially aris-
ing mutations. Future trials will have to address these im-
portant questions. The clinical and immunological results
from these trials will also have a profound impact on the
improvement of vaccines designed against malignant cells.

Safety aspects
Until 2020, no single mRNA vaccination had been ap-
proved in the world. Since the approval of different mRNA
vaccines against SARS-CoV2 in 2020 amidst the ongoing
pandemic, safety aspects become increasingly present.
mRNA vaccines are free of cellular or animal components,
have generally been shown to be safe and well-tolerated
and display only few serious issues of concern. However,
clinical experience on acute and long-term side effects are
limited. In some cases, local reactions such as pain and
redness at the injection site or systemic allergic reactions
might occur. An integration into the patient´s genome is
not possible and microbial contaminations are due to the
short production process and storage at low temperatures
extremely unlikely. Beside these local and systemic inflam-
matory reactions, the theoretical risk of uncontrollable in-
flammation and autoimmunity exists. This would mainly
be mediated by the induced IFN1 response as described
above [37, 62, 69, 199, 216]. Currently there is no clear
evidence that induction of immunity against mRNA itself
takes place. However, in patients with systemic lupus ery-
thematosus and other autoimmune diseases it was pro-
posed that development of anti-self RNA antibodies might
trigger and progress autoimmunity [9, 217]. Besides that, a
residual risk of toxic side effects associated with the deliv-
ery compounds, complexing agents as well as potentially
inserted nucleotides remains. For the latter, it has to be
considered that these side effects might only occur after a
prolonged time after treatment [9].

Future directions
The ongoing SARS-CoV2 pandemic has highlighted how
fast and efficaciously mRNA vaccines can be produced
against a newly arising threat. However, while vaccines
against infectious diseases are usually applied in a
prophylactic setting against well-defined antigens, most
anti-tumor vaccines are administered when the tumor
has progressed. Moreover, cancer target antigens display

a high interindividual heterogeneity, contain a limited
number of cancer-specific cell surface antigens and are
less well characterized. Strategies to overcome immune
escape mechanisms for improving vaccine efficacy
should include combinatorial approaches with specific
adjuvants, CPIs, T cell activating monoclonal antibodies
or the modulation of the tumor microenvironment in-
cluding cytokines, radiation or chemotherapies. mRNA
vaccines could be applied together with T cell therapies
such autologous TCR transgenic T cells or CAR-T cells
and with bispecific antibodies (BITEs). As reported pre-
viously, the expensive manufacturing process of BITE
production can be circumvented using a pharmacologic-
ally optimized, nucleoside-modified mRNA encoding the
antibody [218]. This mRNA vaccination helped to eradi-
cate large tumors in mice [218]. In addition, mRNA vac-
cines are considered to serve as tools for the transient
modulation of immune cells [9, 171]. mRNA vaccines
can not only encode specific antigens, but can also be
used for the transient expression of antigen-specific
TCR or CARs. If these mRNAs are transfected into im-
mune cells such as T or natural killer cells, transfected
cells can recognize and eliminate tumor cells expressing
the targeted antigen. Exemplarily, mRNA was applied in
one study to transiently force T cells to express an epi-
dermal growth factor receptor (EGFR)-specific CAR to
eradicate EGFR-expressing tumor cells [15].
While CAR T cells haven proven efficacious in B-cell

malignancies, only very limited success has been observed
in solid cancers, most likely due to the non-persistence of
adoptively transferred CAR T cells and the limited dispos-
ability of tumor-derived antigens. Reinhard et al. exploited
tight junction protein claudin 6 (CLDN6) as a CAR target
in solid tumors [16]. The group found that CLDN6 as a
transmembrane protein involved in tight junction forma-
tion is broadly expressed in fetal organs and a variety of
solid cancers, but not in healthy tissues [16, 219]. They de-
signed a second generation CLDN6-CAR equipped with a
4-1BB costimulatory domain. This CAR combined with
intravenously applied liposomal antigen-encoding RNA
(RNA-LPX) [124] for T cell stimulation resulted in delivery
to all lymphoid organs [16]. This CAR-T cell Amplifying
RNA Vaccine (CARVac) elicited an IFN1-driven immune
response resulting in the induction and clonal proliferation
of antigen-specific T cells, hence providing evidence for a
possible administration of CARVac to tune the expansion
of engineered T cells [16]. Most impressively, these T cells
showed improved engraftment and reduced the growth of
tumors in several murine tumor models [16].
In summary, the here described developments have paved

the way for a promising future for mRNA vaccines and
might contour the landscape of future anti-cancer treat-
ments. Especially the importance of combinatorial concepts
will advance future anti-cancer therapy approaches.
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