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Main text
Prostate cancer (PCa) is among the most common can-
cers in men worldwide [1] and comprises a highly heter-
ogenous disease, which ranges from indolent localized 
cancer to aggressive high-risk stages, including meta-
static hormone sensitive or hormone refractory PCa. Due 
to the limited specificity and sensitivity of current bio-
markers such as PSA [2], there is an urgent need for bet-
ter biomarkers that can reliably differentiate benign from 
malignant prostate conditions, localized from metastatic, 
as well as aggressive from indolent disease. Furthermore, 
the development of predictive biomarkers that allow for 
better patient stratification and of biomarkers for early 
monitoring of treatment response is of utmost impor-
tance [3].

Treatment options for PCa are mostly based on non-
targeted therapies and include radical prostatectomy, 

hormonal treatment using androgen deprivation ther-
apy (ADT), androgen receptor (AR) signaling-targeting 
agents, chemotherapy or radiation, depending on disease 
state and risk classification [4, 5]. Despite good initial 
response to ADT, tumors eventually progress to meta-
static castration resistant PCa (mCRPC). In this setting, 
recent treatments including poly(ADP-ribose) polymer-
ase inhibitors (PARPi) for tumors harboring mutations in 
DNA repair genes, or radionuclide therapy using 177Lu-
PSMA for PSMA positive cancers have shown promising 
results [5].

Liquid biopsy assays, analyzing circulating free tumor 
DNA (ctDNA) or circulating tumor cells (CTCs) in 
plasma or other body fluids have proven as a useful 
source for biomarkers and have already entered the clin-
ics for companion diagnostic use [6]. Aside from genetic 
alterations, epigenetic tumor-specific changes including 
DNA methylation are measurable in ctDNA and CTCs 
and their potential as diagnostic, prognostic and predic-
tive epigenetic biomarkers has been demonstrated in a 
large number of studies although only few have made it 
into clinical practice, yet [7].
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In this study, we investigated the suitability of DNA 
methylation-based biomarkers for non-invasive PCa 
diagnostics. Based on experiments and in silico analyses 
we identified two DNA methylation signatures, which 
could be used as minimal-invasive markers in liquid 
biopsies for the detection of methylated ctDNA. These 
signatures allowed for the classification of mCRPC with 
high specificity and sensitivity and were able to distin-
guish responders from non-responders following differ-
ent treatment modalities. Importantly, several individual 
marker genes had prognostic potential for radiographic 
progression free survival independent of other clinical 
variables.

Results and discussion
Identification of tissue‑specific DNA methylation markers
Differences in DNA methylation profiles between nor-
mal and PCa tissue were shown in several studies to 
reveal potential DNA methylation-based biomarkers 
for PCa detection [8]. In order to define suitable epige-
netic markers for non-invasive diagnostics, we combined 
experimental and in silico data to derive 92 methylation 
markers that were significantly differentially methylated 
between tumor and normal adjacent tissues, which we 
subsequently tested on ctDNA of PCa patients (Fig. 1A).

First, we used the Infinium HumanMethylation450 
BeadChip array and probed DNA isolated from six local-
ized PCa tissues compared to six adjacent normal tissues 
(Table S1). From these analyses, 7 genes including SER-
PINB1, ACSS3, SCGB3A1, NKX2-6, HOXA7, CRABP2 
and DHRS4L2 were found significantly hypermethylated 
in the tumor samples compared to normal adjacent tis-
sues (Fig.  S1A). Methylation levels of those genes con-
tinually rose from benign to PCa to metastatic tumors, as 
analyzed in two published datasets (Fig. S1B) [8, 9]. Along 
these lines, we could confirm the tumor-specific hyper-
methylation of all seven markers with high significance 

in the publicly available cancer genome atlas PCa data-
set TCGA-PRAD (Fig. S1C). In addition, we inferred 85 
methylation markers from the TCGA-PRAD methylation 
data including PCa (n=498) and adjacent normal tissue 
(n=54). We selected suitable regions for marker evalu-
ation containing at least three neighboring CpG sites, 
which were significantly differentially methylated (p < 
0.05), showed low methylation in the controls (below 
20%) and a methylation difference of at least 15% between 
controls and tumor. Out of the total 92 candidate regions, 
80 were located in promoter regions (-1500bp upstream 
to +1000bp downstream of the transcription start site) of 
the respective genes, with 65 out of the 80 located in CpG 
islands. The remaining 12 candidate regions were located 
in intergenic regions or gene bodies (Table S2).

Identification of a methylation classifier for metastatic 
castration resistant prostate cancer in liquid biopsies 
of patients
To test the 92 identified methylation markers for their 
suitability to detect PCa-specific DNA methylation of 
ctDNA in plasma samples of patients, we used a high-
throughput methylation sensitive restriction enzyme 
(MSRE) assay [10]. This method is based on the selective 
digestion of unmethylated DNA, and can be applied in a 
multiplex setting detecting DNA amounts as low as 10 
copies and 0.1-1% of methylated DNA in an unmethyl-
ated background.

First, we analyzed a total of 174 plasma samples, 
including patients with benign conditions (n=48), 
localized PCa (n=65) and mCRPC (n=61) (Table  S1). 
One sample from the benign cohort was removed 
from further analysis due to poor performance in the 
MSRE-qPCR. Relative methylation values were calcu-
lated based on percentage of methylation ratios (PMR), 
where samples were normalized for input DNA and 

Fig. 1 Identification and liquid biopsy testing of DNA methylation‑based markers. A Experimental Workflow. Flow chart indicates biomarker 
identification, validation and analysis in different patient cohorts and publicly available datasets. B Unsupervised clustering of PMR‑values resulting 
from MSRE‑qPCR analysis of ccfDNA isolated from plasma of indicated patient groups for 92 marker candidates (n=47 benign, n=65 localized 
PCa, n=61 mCRPC, n=1 PBMC). C DNA methylation levels of ccfDNA isolated from plasma in patients with localized PCa or mCRPC versus controls 
for three signature genes. Differences between the three groups were assessed using one‑way ANOVA (CHST11, PCDHGC4 n=47 benign, n=65 
localized PCa, n=61 mCRPC, CUGBP2 n=46 benign, n=62 localized PCa, n=54 mCRPC; **** p < 0.0001). D ROC‑curve analysis based on the three 
gene signature as in (C) for classification of mCRPC samples compared to benign and localized PCa patients combined, calculated with different 
prediction algorithms, ((Bayesian) Compound Covariate Predictor (BCCP, CCP) and Diagonal Linear Discriminant Analysis (DLDA)) using recursive 
feature elimination (n=112 benign + localized PCa, n=61 mCRPC). E Unsupervised clustering of PMR‑values resulting from MSRE‑qPCR of ccfDNA 
isolated from plasma of mCRPC patients before and after treatment, or healthy PBMC controls for 92 marker candidates (n=17 responders, n=12 
non‑responders, n=5 PBMC). F ROC‑curve analysis based on a 3‑gene signature (AKR1B1, KLF8, LDAH) for classification of responders versus 
non‑responders. Calculations were performed using BCCP, CCP and DLDA with recursive feature elimination using BRB array tools software. G 
Methylation levels of the three signature genes for individual responders and non‑responders pre‑ and post‑treatment (n=17 responder, n=12 
non‑responder ** p < 0.01, * p < 0.05, ns p > 0.05; two‑way ANOVA). H Kaplan‑Meier‑Analysis for radiographic progression‑free survival (rPFS) 
of three signature genes using post‑treatment samples (LDAH, KLF8 n=17 responder, n=12 non‑responder; AKR1B1 n=15 responder, n=10 
non‑responder; p values shown on each plot calculated with Mantel‑Cox‑test, censored subjects indicated on plots by strokes)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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two control assays indicating 100% methylation. Unsu-
pervised clustering revealed high levels of methylation 
in most mCRPC plasma samples, whereas normal and 
localized PCa plasma samples showed very low meth-
ylation values and were clustering together with the 
PBMC control (Fig. 1B).

Next, the 92 analyzed marker candidates were used 
for prediction model calculations by inputting PMR val-
ues for class prediction models based on different algo-
rithms including Diagonal Linear Discriminant Analysis 
(DLDA), Nearest Centroid Predictor, k-Nearest-Neigh-
bor Predictor, Support Vector Machines and (Bayesian) 
Compound Covariate Predictor (BCCP/CCP). We used 
a cutoff p value of p ≤ 0.01 and 10-fold cross-validation. 
When comparing the benign with the mCRPC sample 
group, 83 out of the 92 markers were calculated to accu-
rately classify between 93 and 96% of the samples to the 
correct group, depending on the used prediction model 
(Table S3). Areas under the curve (AUC) also depended 
on the used model and showed values of 0.968 (CCP), 
0.972 (DLDA) and 0.966 (BCCP) (Fig.  S2A). Similarly, 
comparing the localized PCa to mCRPC cohort, 83 out 
of the tested 92 marker candidates classified between 
87 and 96% of the samples to the correct group with 
AUCs of 0.956 (CCP), 0.958 (DLDA) and 0.949 (BCCP) 
(Fig.  S2B and Table  S4). While no accurate prediction 
model could be inferred for benign versus localized 
PCa in general, comparisons between benign samples 
and PCa with a Gleason Score of 9 or above, resulted 
in AUCs ranging from 0.828 (CCP), 0.794 (DLDA) 
and 0.8 (BCCP) with 79 to 89% correct classifica-
tion for 12 of the 92 analyzed marker genes (Fig.  S2C, 
D and Table  S5). Although we also observed a signifi-
cant increase of cfDNA in mCRPC samples compared 
to benign and localized PCa samples, no correlation of 
DNA methylation and overall cfDNA concentration was 
detectable (Fig. S2E, F). Furthermore, DNA methylation 
outperformed overall cfDNA concentration measures in 
ROC analyses (Fig. S2G).

To identify a minimal set of markers, which allow 
for an accurate detection of mCRPC, we performed 
signature classifier calculations using recursive fea-
ture elimination. This resulted in a set of three marker 
candidates including CHST11, CUGBP2 and PCD-
HGC4 that accurately differentiated mCRPC from the 
combined group of localized PCa and benign patients 
(Fig.  1C). Depending on the prediction model used, 
this gene signature classified between 92% and 95% of 
the samples to the correct group with AUCs of 0.963 
(CCP), 0.978 (DLDA) and 0.953 (BCCP) (Fig.  1D, 
Table  S6). Individual genes showed AUCs of 0.982 
(CHST11), 0.632 (CUGBP2) and 0.906 (PCDHGC4) 
(Fig. S2H).

Together, these data suggest that mCRPC can be 
identified based on methylation signatures with high 
accuracy, whereas organ-confined PCa with Glea-
son scores lower than 9 cannot be differentiated from 
benign samples, most likely due to limited amounts 
of ctDNA, which was also described in other studies 
analyzing DNA methylation in localized PCa patients 
using digital droplet PCR [11, 12]. Generally, ctDNA 
shows smaller fragment sizes as compared to cfDNA 
shed from normal cells [13, 14]. When performing 
fragment analysis of a subset of benign, localized PCa 
and mCRPC plasma samples (n=20 per group), we 
observed a significant shift of the mean cfDNA frag-
ment size from 175 bp in benign and localized PCa 
(range 168 - 183bp) to 168 bp in mCRPC (range 145 – 
179 bp) samples (Figure S2I).

Thus, our markers might be suitable to identify high 
risk patients, who have already developed micrometas-
tases, which cannot be detected by regular computed 
tomography (CT). Interestingly, hypermethylation of 
CHST11 has been found in breast cancer cell lines origi-
nating from luminal cells, whereas basal-like breast can-
cer cell lines showed rather hypomethylation [15]. This 
might also apply to PCa, which most frequently origi-
nates from luminal cells.

DNA methylation markers differentiate treatment 
responsive from non‑responsive patients
Therapy options for mCRPC are diverse and evalua-
tion of response to different treatments is thus essential 
for treatment decision making [4, 5]. To evaluate the 
potential of our identified marker genes in monitoring 
treatment response in mCRPC patients, we performed 
MSRE-qPCR analyses in liquid biopsies from mCRPC 
patients responsive (n=17) or non-responsive (n=12) 
to different therapies. Therapy response was based on 
increasing/decreasing PSA blood levels after therapy. 
Liquid biopsies were taken before treatment start and fol-
lowing therapy (Table S7).

We detected a trend towards higher methylation in 
non-responder patients before as well as after treat-
ment, whereas responder patients showed reduced 
methylation after treatment compared to pre-treatment 
samples (Fig. 1E)

Using recursive feature elimination, signature classifier 
prediction models calculated a gene signature of three 
genes (AKR1B1, LDAH, KLF8) to distinguish responders 
from non-responders following treatment. Dependent on 
the prediction algorithm used, this signature correctly 
classified 83 – 90% of patients with AUCs of 0.902 (CCP), 
0.892 (DLDA) and 0.863(BCCP) (Fig. 1F, G and Table S8). 
Individual genes resulted in AUCs of 0.931 (AKR1B1), 
0.765 (KLF8) and 0.980 (LDAH) (Fig. S2J). No significant 
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Table 1 Univariate and multivariate cox regression analysis based on methylation of individual genes in plasma post treatment
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difference of overall cfDNA concentrations was evident 
for the different patient groups before and after treat-
ment (Fig. S2K).

When comparing post-treatment plasma samples 
of responders and non-responders to abiraterone 
acetate treatment only, we were able to correctly 
classify 84% of the patients based on 13 marker genes 
(Table S9).

In summary, we defined a methylation classi-
fier for measuring treatment response to different 
therapeutic regimens based on ctDNA methylation 
of 3 distinct marker genes. Therapy-response moni-
toring is an important task for the clinical man-
agement of mCRPC. With a continuously growing 
number of available therapeutic options for mCRPC 
patients [16] it is of high importance to choose 
proper treatments and adjust in a timely manner 
upon failed response. Thus, we suggest that our 
identified methylation markers could allow for early 
detection of non-responders and indicate patient 
prognosis, which could allow for patient stratifica-
tion to adjust treatment and prepare appropriate 
countermeasures.

Prognostic potential of DNA methylation markers 
for progression‑free survival
To test whether our methylation markers could predict 
clinical outcomes such as radiographic progression-free 
survival (rPFS), we performed survival statistics using 
methylation levels of our candidate genes in plasma post 
treatment. Kaplan-Meier survival analysis revealed sig-
nificant associations of methylation and decreased rPFS 
for several marker candidates including the three signa-
ture genes (AKR1B1, KLF8, LDAH) (Fig. 1H and S3).

Next, we performed univariate and covariate cox regres-
sion analyses to determine the prognostic value of our mark-
ers for overall survival (OS) and rPFS. For OS, methylation of 
CRABP2 and TNFAIP8 were significant prognostics factors 
(HR 4.013 and 0.036; p values 0.0395 and 0.0191) in plasma 
of patients following treatment in univariate analysis, but did 
not remain significant in co-variate models including treat-
ment or PSA levels as variables (Table 1).

For rPFS, methylation of 23 individual marker genes 
was a negative prognostic factor for disease recurrence 
in univariate cox regression analysis, with hazard ratios 
(HR) ranging from 2.829 (HOCX4,5,6, p = 0.04) to 12.56 
(CRABP2, p = 0.002).

Since most of the responder patients underwent abi-
raterone acetate treatment, covariate cox regression 
was performed. Despite abiraterone acetate treatment 
showing significant predictive value for radiographic 
recurrence (HR 0.2337, p = 0.0067), methylation of 15 

marker candidates remained an independent significant 
predictor with HRs ranging from 3.2 (PROM1, p = 0.04) 
to 7.968 (CHST11, p = 0.0004) (Table 1). Notably, 11 of 
the marker genes also remained significant in co-variate 
analysis adjusting for PSA as a variable (HR 3.1-6.8) sug-
gesting that our markers are suitable for prognosis inde-
pendent of PSA levels. This finding might have important 
implications for detecting tumors that progress regard-
less of PSA increase.

Taken together our findings reveal the potential of 
DNA methylation-based marker genes to monitor treat-
ment response in mCRPC patients at an early stage 
following therapy administration. Importantly, using 
radiographic recurrence as an endpoint, we reveal sev-
eral methylation markers that could predict tumor pro-
gression following treatment. Due to the small sample 
size and heterogenous treatment history of our study 
population, it will be important to validate our findings 
in an independent homogenous cohort in future studies.

Conclusions
To this date, mCRPC remains an incurable disease. A 
variety of therapeutic approaches for the clinical man-
agement of mCRPC have been developed recently, and it 
is essential to closely monitor therapy response in those 
patients to maximize their survival and quality of life. 
Our study presents several DNA methylation-based bio-
markers with the potential to detect metastatic disease 
and to monitor treatment response and predict disease 
progression in liquid biopsies of patients with advanced 
cancer. Aside from their usability as cancer specific bio-
markers, some of our candidates might also have impor-
tant biological functions for prostate cancer [17–24]. As 
a next step, it will be important to test the performance 
of our methylation markers in prospective clinical trials 
including mCRPC patients undergoing different treat-
ment regimes. We envision the development of a mul-
tiplex MSRE-qPCR kit including our 3-gene signatures 
for routine testing of therapy response of patients with 
advanced PCa in clinical labs in the future.
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