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Main text
Convenient, sensitive and specific detection of rare 
genetic variants and mutations is essential for early can-
cer diagnosis and precision medicine [1], but tools that 
are simultaneously endowed with all these attributes 
remain elusive despite years of intense quest. Recently, 
Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) associated (Cas) proteins have shown 
great potential for rapid and sensitive nucleic acid detec-
tion [2–5]. Guided by a CRISPR-derived RNA (crRNA) 
complementary to the target sequence, the CRISPR/Cas 
complex can recognize and cleave the target nucleic acid 
with single-base resolution specificity [6]. Cas12a is one 
of the most commonly used CRISPR/Cas proteins for 
DNA detection. Upon recognition and cleavage of tar-
get double-strand DNA, the collateral cleavage activity of 
Cas12a is activated, resulting in cleavage of nearby sin-
gle-strand DNA (including fluorescence reporters) in a 

non-specific manner [7], and this “collateral cleavage” has 
been widely exploited for sensitive and specific detection 
of target sequences [8, 9]. However, for detection of rare 
mutations in cancers, the majority of the DNA are wild-
type (WT) sequences, significantly hampering the analy-
sis. We have now solved the problem by simply including 
restriction digestion in the detection system, making 
our method (EasyCatch, for Excision-amplification-syn-
chronous Cas12a-targeted checkout) the first capable of 
convenient, specific, sensitive (0.001%), and rapid (< 1 h) 
detection of mutations in cancer samples.

Development of EasyCatch
For traditional CRISPR detection, when the target muta-
tion sequence in the samples constitutes only a minority 
of total DNA, the detection becomes difficult due to the 
interference by the non-target WT sequences, even after 
target enrichment by recombinase polymerase ampli-
fication (RPA, in 20 min at 37 ~ 42 °C) (Fig. 1a) [10]. We 
hypothesized that by adding a restriction enzyme rec-
ognizing the WT sequence to the RPA system, we can 
destroy the interfering sequences, and thereby inhibit the 
amplification of the WT sequences while facilitate the 
amplification of mutant templates, thus increasing the 
detection sensitivity (Fig. 1a). This strategy is the basis of 
EasyCatch.

For proof-of-concept demonstration, we used Easy-
Catch to detect the drug-resistant FLT3 gene D835Y/H/
V/F mutations in acute myeloid leukemia (AML) [11]. 
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Since EcoRV restriction enzyme can recognize and digest 
WT D835 sequence (−GAT ATC -), but not the D835 
mutant sequences (Fig. S1a). The feasibility of EcoRV 
digestion in the RPA reaction was validated using PCR 
fragments, wherein the fluorescence signal of WT D835 
fragments was eliminated by EcoRV digestion, while 
that of the D835Y/H/V/F fragments was enhanced (Fig. 
S1b-d).

In a Cas12a reaction, a mutation-specific crRNA 
is required to avoid the cross-reactivity against WT. 
To screen for the optimal crRNA for detecting FLT3-
D835Y, we designed four crRNAs, with FLT3-D835Y-
crRNA1 perfectly matching the mutant sequence and 
FLT3-D835Y-crRNA2 ~ 4 bearing various mismatches 
(Fig.  1b). We compared the sensitivity and specificity 
of these four crRNAs in detecting D835Y in PCR frag-
ments (1e10 copies) comprising the D835Y and WT 
alleles. After 30 min of the Cas12a reaction, all the 4 
crRNAs, particularly crRNA1 and crRNA2, could detect 
the sample with 100% D835Y, while crRNA1 but not 
crRNA2 produced a strong signal even for WT sample 
(Fig. 1c; S2). Thereby crRNA2 is the optimal crRNA for 
D835Y detection based on its excellent sensitivity and 
specificity. Optimal crRNAs for D835H/V/F and WT 
were similarly identified, which are D835H-crRNA2, 
D835V-crRNA2, D835F-crRNA, WT-crRNA2, respec-
tively (Fig.  1d; S3–6), and an inner control (IC)-crRNA 
was also designed to target a non-mutation sequence 
near the mutation site. To simplify the diagnosis of the 
four mutations, we pooled the D835Y/H/V/F crRNAs 
(MMT-crRNAs) and the 4 mutant fragments into a sin-
gle reaction, resulting in a strong fluorescence signal, 
whereas the WT sample did not show any signal, as 
expected (Fig. 1e, f; S7).

Next, we screened 9 pairs of RPA primers to improve 
EasyCatch sensitivity (Fig. S8). Using the best primers and 
MMT-crRNAs, as low as 10 copies of D835Y plasmid tem-
plates could be detected only after 20 min of RPA and 20 min 
of Cas12a reaction (Fig. 1g). Therefore, we chose this primer 
pair and 20 min as the Cas12a reaction time in the subsequent 
experiments.

EasyCatch achieves a 0.001% sensitivity in FLT3‑D835Y 
detection
With the optimized crRNAs and primers, we set out to 
determine the detection limit of EasyCatch for FLT3-D835Y. 
We first quantified the effect of EcoRV on WT sequence, 
finding that EcoRV could completely inhibit the amplifica-
tion of up to 1e6 copies of WT templates but spared the 
mutant target as expected (Fig. S9, 10). We then mixed the 
mutant and WT templates at various ratios, with FLT3-
D835Y comprised 100, 50, 25, 10, 1, 0.1, 0.01, and 0.001% 
of the total templates, and used 1e6 copies of the templates 
as the input for EasyCatch, finding the detection limit being 
0.001% (i.e., 10 copies of D835Y template amid 999,990 cop-
ies of WT template). In contrast, in the absence of EcoRV, 
namely CRISPR detection, the detection limit was 1000x 
lower (1%) (Fig.  1h, i; S11). Finally, FGS directly demon-
strated that EcoRV markedly enriched the mutant allele in 
the RPA mixture from 10, 1 and 0.1% to 100, 98 and 51%, 
respectively (Fig. 1j).

We next compared EasyCatch with the commonly used 
qPCR-based detection method. We designed and tested 
two D835Y-specific TaqMan probes (Fig. S12), and then 
chose the more specific one (probe 1) for the comparison 
(Fig. S13, 14). The qPCR results showed that the amplifi-
cation curves and Ct values of 1, 0.1, 0.01% mutant sam-
ples cannot be distinguished from that of the WT sample 
(Fig.  1k, l), indicating its sensitivity of only 1% ~ 10%. 
Together, these results suggested that EasyCatch is much 
more sensitive than TaqMan qPCR in detecting FLT3-
D835Y mutation.

EasyCatch accurately detected FLT3‑D835Y/V/H/F 
mutations in clinical samples
With these, AML patient samples were used for Easy-
Catch detection of D835Y/V/H/F mutations. Briefly, 
200 ~ 500 μl of blood was incubated with red blood cell 
(RBC) lysis buffer for 1 min, and the cell precipitate 
was obtained by 1 min of centrifugation. Next, genomic 
DNA was released by a nucleic acid releaser under 
95 °C for 3 min and then treated by the EasyCatch assay 
(Fig. S15). From drawing blood to making treatment 

(See figure on next page.)
Fig. 1 Development and validation of EasyCatch system for specific and sensitive mutation detection. a Schemes of EasyCatch compared 
with CRISPR detection. b Sequences of D835Y-crRNAs, and FLT3-WT and D835Y gene region. Base G mutates to T in D835Y. c Fluorescence 
heatmap of different D835Y-crRNA-induced Cas12a reactions detecting 1e10 copies of PCR fragments with different D835Y mutation rates (100, 
50, 10%, and 0), Cas12a reactions for 10, 20 and 30 min were recorded. d Specificity assay of D835Y-crRNA2, D835H-crRNA, D835V-crRNA, and 
D835F-crRNA. Time-course of fluorescence intensity and naked-eye observation after 60 min of Cas12a reaction are shown. e Schematic diagram of 
MMT-crRNAs-guided Cas12a reaction to identify D835Y/H/V/F mutations from WT background. f Specificity assay of MMT-crRNAs using 1e10 copies 
of D835Y/H/V/F and WT fragments. Fluorescence intensity after 60 min of Cas12a reaction are shown. IC, inner control. g Time-course analysis of the 
detection of 1e1 D835Y plasmid templates by RPA combined with MMT-crRNAs induced Cas12a reaction. h, i Sensitivity comparison of EasyCatch 
and CRISPR detection in detecting 1e6 copies of plasmid templates with gradient D835Y mutation rates. j FGS results of the amplified products in 
EasyCatch and CRISPR detection. The D835Y mutation rates were quantified using the online tool EditR (https:// moria rityl ab. shiny apps. io/ editr_ 
v10/). k The design and amplification plot of D835Y-probe-mediated qPCR in detecting 1e6 copies of plasmid templates with gradient D835Y 
mutation rates. l Ct value comparison of different qPCR samples

https://moriaritylab.shinyapps.io/editr_v10/
https://moriaritylab.shinyapps.io/editr_v10/


Page 3 of 7Liu et al. Molecular Cancer          (2021) 20:157  

Fig. 1 (See legend on previous page.)



Page 4 of 7Liu et al. Molecular Cancer          (2021) 20:157 

decisions, the whole process can be completed within 
1 h (Fig. 2a). We then simultaneously applied EasyCatch 
and first-generation sequencing (FGS) to detect 32 AML 
samples whose FLT3 gene mutation status had been 
analyzed by next-generation sequencing (NGS) previ-
ously, wherein P6, P12, P17, P27, and P31 carried drug-
resistant D835Y/V/H/F mutations (Fig. 2b; S16, 17). The 
results showed that EasyCatch successfully identified all 
five mutant samples; in contrast, only two samples with 
relatively high mutation rates, P12 of 17.2% and P31 
of 10.9%, were identified by FGS (Fig.  2b). Thus, Easy-
Catch outperforms FGS for clinical sample analysis. 
More importantly, the EasyCatch method is simple and 
economical, and only needs a mini centrifuge, a 20 μl 
pipette and tips, a heat blocker, and a blue lamp with a 
485 nm wavelength (Fig. S18).

We next benchmarked EasyCatch against the com-
monly used FGS for detecting FLT3-D835 mutations in 
80 AML patients (P33 -P112) with unknown FLT3-D835 
mutation status, with NGS as the gold standard. Easy-
Catch, but not FGS, was able to detect D835Y in P38, 
P59, P71, P80, P83, and P106 (Fig. 2c). NGS confirmed 
that all the six samples harbored the D835Y mutation 
(at 4.5, 2.7, 4.1, 3.5, 1.2 and 2.4%, respectively) (Fig. S19, 
20). Notably, NGS showed that P86 carried 10.9% non-
drug-resistant D835E (GAT>GAA) mutation. As this 
mutation did not produce a signal in EasyCatch, further 
confirming the high specificity of this method (Fig. 2c). 
The statistical analysis of the 80 cases further showed 
that EasyCatch is much more sensitive than FGS (100% 
vs. 0%) (Fig. 2d).

EasyCatch is applicable to other cancer mutations
To verify the versatility of EasyCatch, we applied it 
to detect 4 mutations at 3 other genes (IDH2, EGFR 
and NRAS). IDH2 R172K is a hotspot mutation in 
glioma and leukemia, and of prognostic and thera-
peutic value [12, 13]. EGFR e19del and L858R are 
the two main mutations sensitive to EGFR-TKIs, 
thus of great therapeutic value for patients with lung 

cancer [14]. At the same time, the NRAS G12D is a 
driver mutation in leukemia and colorectal cancer 
[15]. All four mutations are important testing items 
in the clinic. We first compared EasyCatch with the 
CRISPR detection method to detect 1e5 copies of 
plasmid templates of 1 and 0.1% mutation rate. The 
results showed that the WT fluorescence signals were 
strong while the signals of all the four mutations were 
weak in CRISPR detection. However, the WT signals 
were almost invisible while the mutation signals were 
significantly increased in EasyCatch (Fig.  2e; S21a). 
The FGS results of the amplified products also con-
firmed the excellent mutation enrichment effect of 
EasyCatch (Fig. S21b). Further analysis indicated 
that the MT/WT fluorescence ratios in EasyCatch 
were hundreds of times higher than that of CRISPR 
detection (Fig.  2f ). More samples with decreasing 
frequencies (100, 50, 25, 10, 1, 0.1%, and 0) of these 
mutations were also tested, with consistent results 
(Fig. S22–25).

We also detected EGFR-e19del, EGFR-L858R, and 
NRAS-G12D mutations using commercial kits based 
on fluorescence qPCR. The tested samples were 1e5 
copies of plasmid templates with a mutation rate of 
10, 1, 0.1, and 0% (WT), respectively. The results of 
all three sites showed that the amplification curves 
of different samples were gradually shifted to right, 
consistent with the decreased mutation rate. How-
ever, we noticed strong fluorescence signals in WT 
samples (Fig. 2g-i; S26–28). In our EasyCatch detec-
tion, the WT signal was completely inhibited by 
restriction digestion and mutation-specific crRNA, 
ensuring the reliability of the results.

Finally, we predicted the scope of application of Easy-
Catch. Total 91,771 human disease-related sites have 
been documented in the ClinVar database (www. ncbi. 
nlm. nih. gov/ clinv ar), and more than 63,000 restric-
tion enzymes reported in the REBASE database (http:// 
rebase. neb. com/ rebase/ azlist. re2. html), 485 of them 
commercially available and functioning at 37 °C. We 

Fig. 2 EasyCatch is applicable to clinical samples and other cancer mutations. a Schematic diagram of the whole mutation diagnosis. b EasyCatch 
and FGS results of 32 AML samples with known FLT3-D835 mutation status, 10/32 cases are shown. D835Y/V/H/F-positive patients are marked by 
red IDs, and red triangles indicate mutant bases. c EasyCatch, FGS, and NGS results of 80 AML samples with unknown FLT3-D835 mutation status, 
9/80 cases are shown. WT and mutated bases in NGS are marked by green and red, respectively. d Statistical table of the sensitivity and specificity 
of EasyCatch compared with FGS using NGS as a standard reference. e Sensitivity comparison between EasyCatch and CRISPR detection in the 
detection of IDH2-R172K, EGFR-e19del and L858R, and NRAS-G12D mutations. Genomic locations of these mutations were shown above, wherein 
exons and mutation sites were colored in blue and red, respectively. The tested samples were 1e5 copies of plasmid templates with a mutation 
rate of 0.1%. Each amplified product was detected by both WT-crRNA and mutation-crRNA induced Cas12a reaction. Fluorescence intensity and 
naked eye results were both recorded. f Statistic analysis of the MT/WT fluorescence ratio in EasyCatch and CRISPR detection. The results of 1 and 
0.1% mutated samples were counted together. g, h, i The qPCR assay for EGFR-e19del, L858R and NRAS-G12D detection, respectively. The qPCRs 
were performed on 10, 1 and 0.1% mutated templates. A 100% WT template and  ddH2O (NC) served as control. j The statistical chart of restriction 
enzyme cuttable human disease-related genomic sites (mutation < 27 bp, which is the detection length of crRNA), wherein commercial available 
37 °C restriction enzyme cuttable sites can be potentially detected by EasyCatch. The inclusion relation is shown in the upper-right corner

(See figure on next page.)

http://www.ncbi.nlm.nih.gov/clinvar
http://www.ncbi.nlm.nih.gov/clinvar
http://rebase.neb.com/rebase/azlist.re2.html
http://rebase.neb.com/rebase/azlist.re2.html
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found that 53,434 (58.2%) sites can be cut by the 485 
enzymes, indicating that the EasyCatch system can 
potentially diagnose ~ 60% of human disease-related 
mutations (Fig.  2j). In addition to restriction enzymes, 
PAM requirement also imposes restriction on the tar-
get range of EasyCatch, but this can be alleviated using 
Cas12a variants (Table S5), and primer-introduced PAM 
(Fig. S29). Thus, EasyCatch is a versatile method for 
detecting gene mutations.

Conclusions
We have adapted the Cas12a-based DNA detection 
platform for evaluating rare cancer-related mutations 
by establishing EasyCatch assay with the sensitivity of 
0.001%, which can be completed (from sample prepa-
ration to data output) within an hour using only simple 
instruments and operations. Our study established Easy-
Catch as the first mutation detection method that is not 
only superbly sensitive and specific, but also extremely 
fast, simple, and convenient, showing its versatility in 
point-of-care cancer diagnosis and precision medicine.
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