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LETTER TO THE EDITOR

Distinct bronchial microbiome precedes 
clinical diagnosis of lung cancer
Erin A. Marshall1,2, Fernando S. L. Filho3, Don D. Sin3, Stephen Lam1,2, Janice M. Leung3*† and Wan L. Lam1,2*†  

Abstract 

Resident microbial populations have been detected across solid tumors of diverse origins. Sequencing of the airway 
microbiota represents an opportunity for establishing a novel omics approach to early detection of lung cancer, as 
well as risk prediction of cancer development. We hypothesize that bacterial shifts in the pre-malignant lung may be 
detected in non-cancerous airway liquid biopsies collected during bronchoscopy. We analyzed the airway microbi-
ome profile of near 400 patients: epithelial brushing samples from those with lung cancer, those who developed an 
incident cancer, and those who do not develop cancer after 10-year follow-up. Using linear discriminate analysis, we 
define and validate a microbial-based classifier that is able to predict incident cancer in patients before diagnosis with 
no clinical signs of cancer. Our results demonstrate the potential of using lung microbiome profiling as a method for 
early detection of lung cancer.
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Background
Forecasting the 10-15% of smokers who would develop 
lung cancer would improve survival rate [1, 2]. Smoking 
weakens the integrity of the bronchial epithelium, ren-
dering the lungs more susceptible to resident microbial 
changes [3, 4]. Lung tumor and surround non-malignant 
tissues show differences in microbiome composition, and 
are both distinguishable from health lungs [4–8]. While 
lung microbiome profiles are explored as a marker for 
tumor presence, we see far greater potential in the clini-
cal utility of detecting lung microbiome changes, as an 
indicator of imminent cancer development, in individu-
als at risk for cancer before any cancer diagnosis can be 
made, i.e. prior to clinical detection of tumors [9]. Here, 
we examined airway microbiomes of 400 individuals 

prior to cancer diagnosis, and compared those who do 
and do not subsequently develop cancer within a ~10-
year follow-up period.

Results
Patient cohorts and microbiome profiling
Bronchscopy-obtained tissue and liquid biopsies (bron-
chial brushing and washing) are clinically used to moni-
tor high-risk patients. Bronchial brushing samples from 
bronchoscopy of 352 smokers were retrospectively 
obtained as part of the Lung Health Study at BC Can-
cer (BCC) with Research Ethics Board approval [10]. 
Seven patients had a previous diagnosis of lung cancer 
that was treated with surgery. Study participants were 
stratified based on their diagnosis at the time of sam-
pling by bronchoscopy into No Cancer, Incident Cancer 
and Prevalent Cancer categories for correlative analyses 
with microbiome attributes (Fig.  1A). Incident Cancer 
refers to patients who at the time of bronchoscopy did 
not have cancer, but during follow-up developed inci-
dent lung cancer. The 345 samples were randomized and 
arbitrarily divided into two cohorts such that each cat-
egory was matched for age, pack-year smoking history, 
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and follow-up time between cohorts: two-thirds used 
for discovery, and one-third as validation (Cohort 1 n = 
230, Cohort 2 n = 115; Table 1). These cohorts show no 
statistically-significant difference in age, pack-year smok-
ing history, lung function, or follow-up time (all p>0.05; 
mean follow-up of 10.2 years).

Airway DNA samples were amplified and profiled 
at the hypervariable region V4 of the 16S rDNA [11] 
using a paired-end read chemistry (2x250bp) alongside 
negative control samples for amplification and sequenc-
ing. All samples yielded high-quality sequence data for 
delineating operational taxonomic units (OTUs, Naïve 
Bayes clustering) through clustering and alignment to 
the SILVA reference database (v132) [12, 13]. Reads were 
processed using the QIIME2® analysis platform (version 
2019.1) [14], and forward reads were trimmed to 231 
bases. Organisms identified to be dominant in control 
samples were excluded from analysis. Microbial com-
munity alpha diversity was evaluated (Shannon index, 
Pielou Evenness, number of OTUs, and Faith’s phyloge-
netic diversity), and no significant difference in diversity 
between Cohorts 1 and 2, or between groups within each 
cohort. Further, principal coordinate analysis of Bray 
Curtis Dissimilarity did not result in separation between 
participants from Cohorts 1 and 2 (PERMOVA, p>0.05; 
data not shown). Additional samples were obtained from 
a BC Cancer and St. Paul’s Hospital study to form a third 
cohort for the validation of the microbiome classifier for 
predicting incident cancers (Cohort 3, n = 48; described 
in Table 1).

Relating airway microbiome to cancer status
At the Genus level, relative abundance measures were 
dominated by Veillonella, Streptococcus, Prevotella, and 
Paenibacillus in all three categories (182 No Cancer, 36 
Incident Cancer and 12 Prevalent Cancer) (Fig. 1B). Tax-
onomic pattern in Cohort 1 discriminated the Incident 
Cancer Group from the No Cancer Group (i.e. no lung 

cancer at any point during follow-up) suggesting that 
shifts in taxonomic composition related to lung cancer 
may occur in airways of patients who develop incident 
lung cancer many months from the date of bronchoscopy. 
To determine which taxonomic identifiers discriminated 
patients who developed incident cancers from those 
who did not develop lung cancer, we used a combination 
of linear discriminate analysis and effect size modeling 
(LEfSe; Fig.  1C) [15]. LEfSe was chosen to determine 
features most likely differentiate groups because in addi-
tional to differences in relative abundance, this statistical 
model captures potential relevance by considering mag-
nitude effect size in the LDA score. Beyond the relative 
abundance of Bacilli, the features with the strongest asso-
ciation with incident cancer status were concentrated 
in the Bacilli class, and the relative abundance of Lacto-
bacillales, the Streptococcus genus and associated family, 
as well as the Paenibacillus genus and associated family.

LMPC classifier predicting incident lung cancer in smokers
To determine whether the candidate features identified 
above could be used to build a classifier to predict inci-
dent cancer risk, we created a summative score based on 
the LDA scores and applied them to our cohorts (LMPC; 
Lung Microbiome Predictor of Cancer). A LDA-weighted 
combined score was created by multiplying the LDA 
score value (established in the discovery cohort above) by 
the relative frequency of the feature in each of the patient 
sample (Fig. 1D).

In the discovery cohort, the Area Under the Curve of 
the Receiver Operating Characteristic (AUC) was able to 
differentiate the Incident Cancer participants from the 
No Cancer participants (p<0.0001, AUC: 0.7057, 95% CI: 
0.6118-0.7997; Fig.  1E). Using Cohort 2 as a validation 
cohort (18 Incident Cancer and 91 No Cancer), this clas-
sifier was able to predict cancer incidence. When stratified 
by the median score, patients with high scores had a signifi-
cantly higher rates of incident cancer than those with low 

(See figure on next page.)
Fig. 1 Microbiome-based LMPC classifier identifies cancer onset in independent cohort of patients at risk of lung cancer. A Timeline of bronchial 
sampling in Cohorts 1-3. B Relative abundance of taxa in the microbial communities Cohorts 1 is shown at genus level of classification. C Linear 
discriminant analysis (LDA) scores of taxonomic features included in the LMPC scoring model. A score magnitude of 4 was used as a cut-off for 
significant features, with a Kruskal-Wallis p-value of <0.05. Grey bars represent taxa that are higher in relative abundance in No Cancer participants, 
while blue bars represent taxa with higher relative abundance in Incident Cancer participants. D Formula used to construct LMPC score, where 
a represents the LDA score value and x represents the relative abundance of each taxa (described in Fig. 1C). E Receiver Operating Characteristic 
AUC differentiates Incident Cancer participants from No Cancer participants in Cohort 1 (p<0.0001, AUC: 0.7057, 95% CI: 0.6118 to 0.7997). F 
When the Incident Cancer (n = 18) and No Cancer participants (n = 91) in Cohort 2 were combined and stratified by risk score, those with high 
scores (red) had significantly earlier cancer diagnosis than those with low score (blue). G Within the Incident Cancer patient group, those with 
high scores demonstrated shorter time to cancer diagnosis than those with low scores. In both analysis, samples were separated into two groups 
based on the median score value. H Using a Receiver Operating Characteristic AUC as defined by the score, we are able to differentiate Incident 
Cancer participants from No Cancer participants in Cohort 2 (p=0.0498, AUC: 0.6503, 95% CI: 0.5167-0.7839). I In an independent cohort (Cohort 3), 
incident cancer participants comprised 4 of the top 5 largest score values. Incident cancer participants are shown in blue, while participants who 
did not have a diagnosed cancer with follow-up are indicated in black. Cancer onset was assessed using receiver operating curves and log-rank 
tests, where p<0.05 was considered significant
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Fig. 1 (See legend on previous page.)
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scores (p=0.01) (Fig. 1F). Further, when clinical features are 
incorporated to adjust for participant age, smoking history 
(pack-years smoked), and lung function (FEV1% predicted), 
the LMPC score can identify patients who will develop lung 
cancer (Cox proportional hazards model; log-rank test, 
p=0.004). Again, the AUC was able to differentiate the Inci-
dent Cancer from No Cancer participants (p=0.0498, AUC: 
0.6503, 95% CI: 0.5167-0.7839) (Fig.  1G). Further, within 
the Incident Cancer subset of Cohort 2, patients with 
higher scores had a trend towards faster cancer incidence 
than those with low scores (log-rank test, p=0.05; adjusted 
for clinical co-variants as above) (Fig. 1H).

Application of LMPC classifier to an independent cohort
A third cohort was processed and sequenced indepen-
dently from Cohorts 1 and 2 (40 No Cancer, 5 Incident 

Cancer). After applying the scoring system to Cohort 
3, 4/5 Incident Cancer participants had the higher risk 
scores, indicating that these individuals may be at the 
highest risk of developing cancer (Fig.  1I). Indeed, they 
developed lung cancer on average 16 months from the 
time of sampling, while the case with low score did not 
developed cancer until 53 months. The AUC readily dif-
ferentiated Incident Cancer from No Cancer participants 
(p=0.0103, AUC: 0.8550, 95% CI: 0.6180-1.000).

Discussion
Distinguishing the 10-15% of smokers who would 
develop lung cancer from those who will not presents a 
clinical challenge. While the consensus of specific taxo-
nomic classifiers associated with lung cancer remains 
contentious, it is clear that the microbiome is involved in 
human biological processes, and plays a functional role 

Table 1 Clinical summary of Cohort 1 (n=230), 2 (n=115), and 3 (n=48). Cohorts 1 and 2 were sourced from BCC, and clinical 
characteristics are summarized for incident- (n=36, n=18), prevalent- (n=12, n=6), and no-cancer (n=182, n=91) participants. Cohort 
3 was sourced from SPH/BCC and clinical characteristics are summarized for incident- (n=5), prevalent- (n=3), no-cancer (n=40) 
participants. Patients were randomly assisnged to Cohort 1 or 2 Values are displayed as mean values, unless otherwise specified

Cohort 1 Cohort 2 Cohort 3

Incident Prevalent No cancer Incident Prevalent No cancer Incident Prevalent No cancer

N 36 12 182 18 6 91 5 3 40
Age (mean) 64.4 62.1 62.1 64.6 65.5 61.8 64.6 64.3 62.6

Sex (% female) 44.4 50 46.2 50 83.3 45.1 40 66.6 47.5

Smoking status (mean %)
 Current 50 25 45.6 55.6 33.3 47.3 20 33.3 47.5

 Ex 50 75 54.4 44.4 66.7 52.7 60 0.0 52.5

 Never 0 0 0 0 0 0 20 33.3 0

Pack-years smoked (mean) 51.1 48 47 55.3 47 44.8 50.7 37.8 48

Lung function (mean)
 FEV1/FVC 67.3 62 71.3 66 65.2 72.1 73.6 79 67

 FEV1 2.5 2.1 2.6 2.3 1.8 2.6 2.3 2.1 2.4

 FEV1 % predicted 78.5 71.4 84.3 85.2 68.6 85.2 88 83.3 77.6

COPD status (mean %)
 No COPD 36.1 33.3 57.1 38.9 33.3 63.7 80 100 45

 Mild 19.4 8.3 18.1 16.7 0 17.6 0 0 5

 Moderate 38.9 25 20.9 33.3 33.3 16.5 20 0 35

 Severe 2.8 16.7 2.7 11.1 16.7 1.1 0 0 15

 Very Severe 0 0 0 0 0 0 0 0 0

Follow-up time (mean, yr)
 Total 9.7 9.5 10 10.1 8.4 10.1 7.6 7 9.8

 To cancer 4.2 N/A N/A 4.3 N/A N/A 1.9 N/A N/A

Cancer type
 LUAD 42.4 88.9 38.9 66.7 100 100

 LUSC 12.1 11.1 16.7 33.3 0 0

 NSCLC 9.1 0 11.1 0 0 0

 SCLC 12.1 0 5.6 0 0 0

 Other 24.2 0 27.8 0 NA NA
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in cancer pathogenesis. However, the timing of these 
microbial community alterations with respect to cancer 
onset remains unknown and has tremendous clinical 
implications in advancing early detection of lung can-
cer. Here, we showed that there are significant detectable 
changes in the lung microbiome in participants who, at 
the time of bronchoscopy, did not have cancer but who 
subsequently developed lung cancer during follow-up 
(i.e. the Incident Cancer patients). These data thus pro-
pose a microbial-DNA-based classifier to predict inci-
dent cancer cases in our cohort of current and former 
smokers.

We identified taxonomic features (changes in Cohort 1) 
that yielded the largest LDA score and developed a clas-
sifier, which was able to distinguish cancer status. The 
classifier model was validated in Cohort 2, demonstrat-
ing its ability to distinguish Incident Cancer from No 
Cancer and thus enabling prediction of incident cancer 
in smokers who are otherwise asymptomatic (Fig.  1D). 
When stratified by the LMPC classifier, participants with 
a high score have a significantly shorter time to cancer 
onset than those with a low score in a combined group 
of No-Cancer and Incident Cancer participants. Of 
note, the absolute risk in this cohort is consistent with 
cancer onset rates in “high-risk” individuals, suggest-
ing that these findings may be applicable to a broader 
at-risk community. Within the Incident Cancer group 
(in Cohort 2) those samples with high scores (separated 
by median) had earlier cancer onset than those with low 
scores (Fig. 1F).

When this same scoring was applied to a third cohort 
that was sequenced independently, 4/5 Incident Cancer 
participants were identified to have the highest LMPC 
scores and developed cancer in a mean time of 1.29 years 
from the time of sampling (Fig. 1H). Upon further exami-
nation, the fifth Incident Cancer sample (C3-15) with 
the lower score was found to have a much longer time-
to-cancer diagnosis of 4.43 years following the airway 
sample collection. Since this proposed classifier is able 
to distinguish participants who will develop cancer over 
time from those who will not, it is reasonable to expect 
that this score is more predictive the closer the sample 
procurement is to cancer diagnosis. The behavior of this 
patient is consistent with this expectation, indicating that 
this risk score model may be most applicable closer to 
cancer onset.

Our results demonstrate that specific changes in air-
way liquid biopsy (brushings) samples, obtained during 
clinical examination by bronchoscopy, in fact, occur 
before clinical cancer diagnosis. Lung microbiome 
shifts can serve as a marker in advance of the clinical 
phenotypes detectable by low-dose CT scans. We have 
defined a microbiome-based classifier that can predict 

incident cancer with follow-up from patients having 
no clinical signs of cancer. As lung-resident microbi-
omes are associated with smoking status, and this study 
describes cohorts of ever-smokers and former smok-
ers, future work should examine if this signature can 
be applied to assess cancer onset in individuals with-
out a history of smoking history. Our findings provide 
strong rationale for developing microbiome-based liq-
uid biopsy technology to prioritize at-risk individuals 
for clinical attention.
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