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Deciphering and advancing CAR T-cell therapy
with single-cell sequencing technologies
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Abstract

Chimeric antigen receptor (CAR) T-cell therapy has made remarkable progress in cancer immunotherapy,

but several challenges with unclear mechanisms hinder its wide clinical application. Single-cell sequencing
technologies, with the powerful unbiased analysis of cellular heterogeneity and molecular patterns at
unprecedented resolution, have greatly advanced our understanding of immunology and oncology. In this review,
we summarize the recent applications of single-cell sequencing technologies in CAR T-cell therapy, including the
biological characteristics, the latest mechanisms of clinical response and adverse events, promising strategies that
contribute to the development of CAR T-cell therapy and CAR target selection. Generally, we propose a multi-omics
research mode to guide potential future research on CAR T-cell therapy.
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Introduction

Chimeric antigen receptor (CAR) T-cell therapy has
changed the therapeutic landscape of cancer immu-
notherapy, especially for hematological malignancies,
including B-cell acute lymphoblastic leukemia (B-ALL)
[1], B-cell non-Hodgkin’s lymphoma (B-NHL) [2],
chronic lymphocytic leukemia (CLL) [3], and Hodgkin’s
lymphoma (HL) [4]. Although CAR T-cell therapy has
impressive clinical outcomes, there are still a series of
challenges, such as high cost, restricted clinical acces-
sibility, resistance, relapse and adverse events [5, 6]. The
widespread application of CAR T-cell therapy in hema-
tological malignancies has led researchers to test its effi-
cacy in solid tumors. [7-11]. However, compared with
hematological diseases, CAR T-cells are less effective in
solid tumors due to the inadequate tumor infiltration of
CAR T-cells, the lack of stably expressed, tumor-specific
antigens, the highly immunosuppressive tumor micro-
environment (TME), etc. [12-16]. These problems are
expected to be addressed by analyzing the molecular
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landscape and heterogeneity of CAR T-cells and their
interactions with various cells in the microenvironment.
Flow cytometry has been the main metric used in CAR
T-cell therapy to measure the immunophenotype and
composition of circulating CAR T-cells [17, 18], but its
low throughput and hypothesis-driven nature prevent
unbiased exploratory screening and molecular profiling
of CAR T-cells. Therefore, it is challenging to identify the
key molecular drivers associated with the expansion and
persistence properties of CAR T-cells that are directly
related to treatment outcomes. These shortcomings in
measuring clinically relevant features are being addressed
with the development of single-cell RNA sequenc-
ing (scRNA-seq). Single-cell sequencing technologies
enable unbiased, high-resolution, and high-throughput
sequencing analysis to reveal cellular heterogeneity with
unprecedented resolution and capture high levels of the
molecular landscape. Functional analysis also helps to
understand cellular transitions, interactions and commu-
nications of CAR T-cells [19-23]. This has provided new
insights into the overall performance of CAR T-cells in
relation to patient prognosis (Table 1). In this review, we
discuss how single-cell sequencing technologies, espe-
cially scRNA-seq, decipher and advance CAR T-cells
and facilitate CAR target selection. Finally, we propose a
multi-omics research mode from a clinically translational
perspective to help researchers better understand and
explore the future directions of CAR T-cell therapy.

Basics of CAR T-cells

CAR T-cell product heterogeneity is affected by CAR
structure [24-26], T cell subtype [27] and product man-
ufacturing process [28], which influences the efficacy
and safety of CAR T-cell therapy. Single-cell sequencing
technologies can systematically evaluate the impact of
the above factors on the final CAR T-cell product, guid-
ing the rational design and optimization of CAR T-cell
therapy. CAR is an engineered receptor that is composed
of three main parts: the extracellular, transmembrane
and intracellular domains (Fig. 1A). According to the dif-
ferences in the design of intracellular domains and the
adoption of cytokines and ligands, CAR molecules have
been developed for five generations [29]. Different com-
binations of molecular modules of the CAR have differ-
ent effects on the phenotype and function of CAR T-cells,
such as the selection of the costimulatory domain [26]
and the immunogenicity of the single-chain variable frag-
ment (scFv) [24, 25]. For T cell subtypes, the CD4:CD8
ratio and the composition of different T cell subtypes
affect the antitumor ability of CAR T-cell therapy. For
instance, when the CD4:CD8 ratio is 1:1, the synergistic
antitumor ability can have a better effect [30-32]. CAR
T-cells with less-differentiated naive and early memory
features are related to a higher rate of durable clinical
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remission [33, 34]. Exhausted T cells with higher expres-
sion of inhibitory immune checkpoint receptors are asso-
ciated with poorer clinical outcomes [35]. In addition, the
difference in CAR T-cell lineage clones based on the T
cell receptor (TCR) is also an important factor leading to
the heterogeneity of CAR T-cell products [36].

During the manufacturing process, every step may
contribute to the heterogeneity of the final CAR T-cell
product [28]. The traditional manufacturing process
of CAR T-cells begins with the collection of peripheral
blood mononuclear cells (PBMCs) from patients under-
going leukapheresis. Next, T cells that have been further
enriched from PBMCs are stimulated with anti-CD3/
anti-CD28 monoclonal antibodies to induce T cell acti-
vation, and then lentiviral vectors, gamma-retroviral vec-
tors or other delivery methods are used to engineer CAR
molecules into T cells. Subsequently, these generated
CAR T-cells are expanded in vitro to reach the required
amount of cells for either experimental testing or clinical
treatment [37, 38] (Fig. 1B). Moreover, T cells can also be
extracted from healthy donors (HDs) to prepare alloge-
neic CAR T-cells [39].

Single-cell sequencing technologies for CAR T-cells
Single-cell sequencing technologies used in CAR T-cell
research mainly include scRNA-seq, single-cell T-cell
receptor sequencing (scTCR-seq), single-cell assay for
transposase-accessible chromatin sequencing (scATAC-
seq), cytometry by time-of-flight (CyTOF), cellular
indexing of transcriptomes and epitopes by sequencing
(CITE-seq) and single-cell multiplexed secretome
proteomics.

scRNA-seq for CAR T-cell research

scRNA-seq is currently the most widely used single-cell
sequencing technology. Every scRNA-seq experiment
follows a similar basic strategy, including sample dis-
sociation, single-cell capture, cell lysis, mRNA reverse
transcription, cDNA amplification, library construction,
high-throughput sequencing, and data analysis [40, 41]
(Fig. 2A, B). The samples of CAR T-cell research mainly
include CAR T-cell products, PBMCs, bone marrow
(BM), cerebrospinal fluid (CSF) and tumor tissue. Ade-
quate sample preparation is a prerequisite for generating
reliable single-cell transcriptomics results. The general
dissociation process includes tissue dissection, mechani-
cal mincing, enzymatic/proteolytic extracellular matrix
(ECM) breakdown and selective enrichment. Since CAR
T-cell products and PBMCs are single-cell suspensions,
the dissociation step is eliminated, avoiding the gen-
eration of stress genes in the process and retaining the
proportion of various cell types, which is crucial for the
reliability of single-cell sequencing data.
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The droplet-based platform (10x Genomics BD) is
the most commonly used scRNA-seq platform in the
field of CAR T-cells. Using a microfluidic chamber, the
droplet-based method can separate individual cells into
an oil-based microdroplet. A single droplet contains
gel microbeads with mRNA-capturing primers in con-
junction with a unique molecular barcode alongside an
enzyme/reagent mix, which is required for cell lysis and
reverse transcription. Single cells in the droplets are
lysed, followed by reverse transcription, cONA amplifica-
tion, and the generation of a barcoded sequencing library.
Then, the samples are processed for sequencing. The
obtained raw data require quality control, which is cru-
cial to the subsequent exploration of biological questions
from downstream analysis at the cell/gene level. Down-
stream analyses include simple quantification of gene
expression to in-depth examination of cell heterogeneity,
lineage transitions, cell-cell interactions, etc. Compre-
hensive tutorials of workflow and analysis of scRNA-seq
have been established [40, 41].

Cita-
tion
[154]

meta-atlas were leveraged to select gene pairs ( AND,

OR and NOT switch targets) that contributed most
to discrimination between individual malignant and

The large-scale tumor-normal single-cell
on transcriptome-coupled epitope mapping. normal cells. And the results were validated in ovarian

cancer and colorectal cancer.

Conclusion
CAR Chimeric antigen receptor, scRNA-seq single-cell RNA sequencing, ALL Acute lymphoblastic leukemia, MHC Major histocompatibility complex, C/TE-seq Cellular indexing of transcriptomes and epitopes by sequencing,

scATAGseq single-cell assay for transposase-accessible chromatin sequencing, MM Multiple myeloma, MSLN Mesothelin, BCMA B-cell maturation antigen, /Ps Infusion products, BM Bone marrow, LV Lentiviral vector, VSV
Vesicular stomatitis virus, BCL B cell ymphoma, T, Helper T cell, Treg Regulatory T, TAC/ Cyclophilin ligand interactor, PBMCs Peripheral blood mononuclear cells, scTCR-seq single-cell T-cell receptor sequencing, TIG/T T cell
immunoglobulin and ITIM domain, CLL Chronic lymphocytic leukemia, NHL Non-Hodgkin’s lymphoma, CyTOF Cytometry by time-of-fligh, PCL Plasma cell leukemia, AP ribosomal protein, TME Tumor microenvironment, GBM
Glioblastoma, PAAD Pancreatic adenocarcinoma, CAE continuous antigen exposure, NK Natural killer, Ch/P-seq Chromatin immunoprecipitation sequencing, Mm Malignant melanoma, LBCL Large B-cell lymphoma, PR Partial
response, PD Progressive disease, CR complete remission, PFS Progression-free survival, DCs Dendritic cells, MCL Mantle cell ymphoma, CTLs Cytotoxic T lymphocytes, T, Stem cell-like memory T cell, 7, Central memory
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A. Structure of TCR-CD3 complex and CAR molecule
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B. CAR T-cell manufacturing pipeline

Leukapheresis Infusion

Patient

/ CARTcells

Gene transfer system
o Viral vector
+ Non-viral vector

Fig. 1 The basics of CAR T-cells. (A) Illustration of the basic structure of the conventional TCR-CD3 complex and CAR molecule. (B) Flow scheme of the
CART-cell manufacturing process. Autologous CAR T-cell manufacturing typically begins with leukapheresis of the patient. Then, the T cells are activated
and amplified with antibody-coated beads. After that, the CAR construct is introduced into the T cells, typically by viral or non-viral vectors. Finally, CAR
T-cells are expanded to the required amount and then infused into the patient after quality control testing
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Fig. 2 Single-cell sequencing technologies for CAR T-cell therapy. (A) Schematic overview of single-cell multi-omics analysis of CAR T-cell therapy. (B)
scRNA-seq measures the transcriptome from the entire cell. (C) scTCR-seq measures the V(D)J sequence of TCR and gene expression profiles in tandem.
(D) scATAC-seq identifies open regions of chromatin by inserting adapters with Tn5 transposase to map regions of transcription factor binding. (E) CyTOF
analyzes a high-dimensional, multi-parametric quantification of protein detection with metal-isotype antibody, inductively coupled plasma ionization,
and time-of-flight detector. (F) CITE-seq allows the simultaneous assessment of the transcriptome and surface or intracellular protein expression of indi-
vidual cells immunostained with oligonucleotide-coupled antibodies. (G) SCBC measures multiple secreted proteins with arrays of microchambers that

are decorated with ordered arrays of antibodies against target proteins

proteomic devices for measuring secreted cytokines [53].
SCBC uses concentrated arrangements of microfabri-
cated compartments (typically<1 nL volume) with spa-
tially barcoded capture sites (currently commercialized
by Isoplexis) for highly multiplexed single-cell analysis of
up to 42 cytokines related to CAR T-cell function, such as
effector, stimulatory, regulatory and inflammatory mole-
cules [54] (Fig. 2@G). Since CAR T-cells exhibit significant

heterogeneity in cytokine secretion, polyfunctional CAR
T-cells and the polyfunctionality strength index (PSI)
are used to describe CAR T-cell subsets capable of co-
producing multiple cytokines at the single-cell level,
which has been utilized to predict the clinical outcome of
patients [55-58].
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Deciphering and advancing CAR T-cell biology

CAR T-cell product heterogeneity

For CAR structures, the selection of the costimulatory
domain is a critical factor to explore. Although CAR
T-cells with CD28 or 4-1BB have similar clinical efficacy,
they differ in kinetics and phenotype [26]. scRNA-seq
showed that they had distinct transcriptional expression
profiles, whether in the baseline or activated state, which
indirectly reflected the different transcriptional regula-
tory mechanisms [59-61]. In addition to verifying that
4-1BB CAR T-cells have the gene encoding the memory
phenotype and longer persistence compared with CD28
CAR T-cells [59, 60], multiple studies have observed
that 4-1BB CAR T-cells express more MHC II genes
[59-61]. This is presumably beneficial for co-application
with tumor vaccines to increase antigen presentation to
enhance epitope spread, but increases the risk of host-
graft rejection of allogeneic “off-the-shelf” CAR T-cells
[59].

For T cells, allogeneic CAR T-cells derived from HDs
are an important means to expand the clinical acces-
sibility of CAR T-cell therapy [62-64], but the intrinsic
heterogeneity, function and safety of HD-derived alloge-
neic CAR T-cells have not been systematically evaluated.
A study combined scRNA-seq and CITE-seq to charac-
terize the differences between HD and patient-derived
CAR T-cells in transcriptome, phenotype, and metabolic
characteristics and found that HD-derived CAR T-cells
were at a higher level of activation [61]. Moreover, the
upregulation of MHC II genes indicated that HD-derived
CAR T-cells may have stronger and faster antitumor effi-
cacy but increased the risk of being cleared by the host
immune system. HD-derived CAR T-cells were also asso-
ciated with lower granulocyte-macrophage colony-stim-
ulating factor (GM-CSF) expression than patient-derived
CAR T-cells [61], which is a stimulator of CRS [65, 66],
consistent with the clinically observed lower incidence of
CRS in allogeneic CAR T-cells [67].

The difference in manufacturing processes is a crucial
factor leading to CAR T-cell product heterogeneity. Pre-
vious studies have observed that the selection of fresh
or cryopreserved PBMCs as primary material led to dis-
crepancies in the efficacy of CAR T-cell products [68, 69].
A recent single-cell study suggested that this might be
related to the number of Treg cells, which are notoriously
intolerant of freezing [70]. In addition, the efficiency of
viral transduction of CAR molecules influences CAR
T-cell fitness and antitumor efficacy. Different profiles
of CAR T-cells expressed by different CAR molecules
(CARMEY, CARMY) at the bulk and single-cell levels con-
firm that CARME" T-cells have stronger tonic signaling,
activation and exhaustion [71]. Furthermore, characteriz-
ing gene regulatory networks found that CAR™e" T-cells
were regulated by the exhaustion-related regulators
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RFX5, NR4A1, and MAF [71]. Notably, cells with low
or even negative expression of CAR express interferon-
induced transmembrane (IFITM) 2 and IFITM3, which
prevent viral vector entry and are probably potential drug
targets to overcome the inefficiency of CAR transduction
[72]. For vector bias to CAR T-cell function, scRNA-seq
revealed that the transduction of vesicular stomatitis
virus (VSV)-lentiviral vectors (LV) promoted the tran-
sition of CAR T-cells to a central memory phenotype,
while the transduction of CD8-LV promoted the transi-
tion of CAR T-cells to a cytotoxic phenotype [72].

Antigen-specific stimulation of CAR T-cells

The activation mechanism of CAR T-cells is quite dif-
ferent from that of innate T cells. Compared with
TCR-induced activation, the full molecular landscape
of downstream signaling in CAR-induced activation
remains elusive, which is partly due to the heterogene-
ity of CAR T-cell products. On the one hand, different
CAR T-cell phenotypes differ in their ability to respond
to antigens. On the other hand, not all cells in CAR T-cell
products harbor CAR expression, which easily confuses
the analysis of the cells upon antigen encounter. Sev-
eral studies have used scRNA-seq and other single-cell
sequencing technologies to resolve the heterogene-
ity of CAR T-cell products under different conditions
of unstimulated, CAR-induced stimulated and TCR-
induced stimulated CAR T-cells [59, 61, 73—-75]. Due to
the presence of ligand-independent tonic signaling, CAR
T-cells in the unstimulated state are regulated by a mix-
ture of early activation, exhaustion signatures, and cyto-
toxic activities [61]. After CAR-induced activation, CAR
T-cells present highly mixed T;1/T2 cell signaling. The
levels of cytokines, such as IFN-y, TNF-a, GM-CSE, IL-5
and IL-13, show great heterogeneity among different cell
subsets [75]. Since GM-CSF is highly expressed in many
CAR T-cells, GM-CSF* CAR T-cells can be regarded as
in a functionally active state, which is different from con-
ventional T cells [61, 75]. Notably, CD4" and CD8" CAR
T-cells showed high expression of cytotoxic cytokines,
indicating that both cell types had killing functions [75].
Moreover, some CAR T-cell subsets upregulated the
expression of the immune checkpoint genes CTLA4 and
PD-1 and the immunosuppressive cytokine genes IL-10
and TGFB1 and downregulated the costimulator genes
inducible costimulatory (ICOS) and OX40, which may be
a mechanism to maintain immune homeostasis after acti-
vation [75]. In addition, some studies have also observed
that some activated CAR T-cells did not change the tran-
scriptomic profiles, and a few CAR T-cells showed signs
of exhaustion in the early stages after activation [74,
76]. The relevant mechanism is still unclear, and it may
be attributed to the CAR T-cell manufacturing process,
tonic signaling, or cell-source specificity [74]. The gene
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expression was different between CAR T-cells stimulated
by TCR and CAR-specific stimulation, with the former
more specifically enriched in T cell activation genes (e.g.,
IFN-y, IL-3, and CCL4) [59, 73].

The dynamic performance of CAR T-cells in vivo

CAR T-cells after infusion will experience rapid expan-
sion as well as differentiation and exhibit long-term
persistence of atypical patterns in metabolism and clear-
ance [77-79]. The dynamic performance of CAR T-cells
varied in both initial response and long-term remission,
reflecting the function of CAR T-cells and the interaction
between CAR T-cells and the host. Heterogeneity of CAR
T-cell products affects the differentiation of CAR T-cells
to different cellular dynamics and cell fates. A study uti-
lized scRNA-seq and scTCR-seq and revealed that early
CAR T-cell proliferation in tisa-cel responders was char-
acterized by expansion of memory-like CD8" CAR T-cell
clones that differentiated into IL7R" effector memory
CAR T-cells, while axi-cel responders exhibited more
heterogeneous populations. Among them, CD8" CAR
T-cells had stronger upregulation of activation marker
PDCD1 and the immune checkpoint regulator SLAMF6
[70]. However, even if the same CAR T-cell product was
activated by the same antigen, different CAR T-cell sub-
populations led to different patterns of expansion and
displayed divergent differentiation trajectories [36, 76].
However, clusters with high expression of cytotoxicity
and proliferation genes usually predominated the post-
infusion CAR T-cell functional groups [36, 76]. In addi-
tion, a study using scRNA-seq and scTCR-seq found an
effector precursor CD8" CAR T-cell with a unique tran-
scriptional profile TIGIT*CD27 CD62°Y in the initial
infusion sample [76]. It was subsequently the main source
of the majority of CAR T-cells with an effector pheno-
type in patients [76]. As tumor cells were cleared, most
CAR T-cells at the remission phase further developed
into long-lived memory cells and stayed in the “resting
primed” state with minimal energy consumption to pre-
vent relapse [36, 80]. These processes were conserved
in the evolution of CAR T-cells targeting different anti-
gens in different hematological malignancies [36, 76, 80].
Of note, in a recent study, two patients with CLL who
achieved complete remission (CR) for up to 10 years had
an initial response dominated by cytotoxic CD8" CAR
T-cells in their peripheral blood, followed by a long-term
remission stage dominated by cytotoxic and proliferative
Ki67MCD4* CAR T-cells [81] (Fig. 3A). The CD4* CAR
T-cells displayed a non-classical memory phenotype and
a state of ongoing activation and proliferation. Mean-
while, they expressed cytotoxic genes, such as GZMA,
GZMK and PRF1, as well as genes related to oxidative
phosphorylation pathways. In vitro culture showed that
the long-persisting CD4" CAR T-cells were capable of
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killing CD19-expressing target cells directly. Neverthe-
less, in other studies, almost no CD4* CAR T-cells were
observed in patients in remission, and cytotoxic effects
were absent [80]. Thus, the importance of CD4" CAR
T-cells in long-term disease control should be considered
in conjunction with patient-specific characteristics, and
the universality of the gene expression profiles needs to
be further validated and explored in large-scale clinical
cohort.

Cellular interactions with CAR T-cells

The function of CAR T-cells is closely associated with
endogenous immune cells in the circulation system and
tumor cells, immune cells and stromal cells in the TME.
The complex cellular interactions involved in the function
of CAR T-cells are critical to understanding the mecha-
nism of action of CAR T-cells [82]. A study performed
scRNA-seq on CAR T-cell products and PBMCs from
plasma cell leukemia (PCL) patients after receiving CAR
T-cell treatment. The ligand-receptor analysis showed
the extensive interaction between proliferating CAR
T-cells and cytotoxic CAR T-cells, as well as between
CAR T-cells and endogenous T cells, and the gene ontol-
ogy (GO) analysis found it associated with T cell activa-
tion, cell-cell adhesion, and TNEF-related pathways, which
indicated that CAR T-cells may establish a new immune
environment by recruiting endogenous T cells [80].
Hence, CAR T-cells act as not only killers but also regula-
tors. In fact, CAR T-cells can also reshape the TME and
activate both innate and adaptive immunity to produce
synergistic antitumor immunity by releasing IFN-y [83,
84]. It was observed in two studies that IFN-y derived
from CAR T-cells promoted a more activated and less
suppressive TME in two different animal models (B-cell
lymphoma and glioblastoma), with concurrent activation
and an increase of T lymphocytes and natural killer (NK)
cells and the upregulation of myeloid cells expressing
more antigen processing and presentation-related genes.
Subsequent functional experiments confirmed that a lack
of IFN-y impaired the activation of host immune cells,
which then affected the killing efficacy of CAR T-cells in
vivo [85, 86].

CAR T-cells in continuous contact with tumor cells
could easily lead to CAR T-cell exhaustion. A study per-
formed bulk and single-cell sequencing of CAR T-cells
continuously co-cultured with tumor cells in vitro (0,
20 and 28 days) and found that exhausted CD8" CAR
T-cells changed to a NK-like phenotype at the transcrip-
tional, epigenetic and protein levels [87]. Meanwhile,
gene expression levels of exhaustion markers and the NK
signature increased under chronic antigen stimulation.
Moreover, the transcriptional regulators ID3 and SOX4
were specifically expressed in exhausted NK-like CAR
T-cell clusters, and their knockdown restored CAR T-cell
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A. Dynamics of CAR T-cell response in peripheral blood
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Fig. 3 The dynamic biology of CAR T-cells in the peripheral blood and tumor microenvironment. (A) Schematic diagram of CAR T-cell dynamics in differ-
ent phases in two CLL patients with clinical remission for more than 10 years after the infusion of CAR T-cells. (Left) The adjacent stacked bar plots exhibit
the proportion of each CAR T-cell population at different time points. (Right) In the initial stage, CD4* CAR T-cells provide support to CD8" CAR T-cell
responses via IL-2. In the long-term remission phase, the expression of the GZMA and GZMK genes was strongly upregulated, while GZMB was not highly
expressed. The persistence of Ki67"'CD4* CAR T-cells may partly be driven by healthy B cells. (B) Schematic diagram of cellular changes in bone marrow
samples at different times in the TME (classified as pre-therapy, 28 days (D28) or 3 months (3M) following CAR T-cell treatment) of patients with short PFS
(<6 months) or long PFS (> 6 months). (Left) The adjacent stacked bar plots show the proportion of nontumor cells at different times. (Right) For patients
with short PFS, there were terminal differentiation markers in bone marrow T cells at day 0 (D0). Monocytes/macrophages enriched with myeloid cells
expressing BAFF and PD-L1 and CAR T-cells showed a more differentiated/effector phenotype at D28. At 3M, myeloma cells were increased and similar
to the baseline phenotype. For patients with long PFS, the diversity of TCR was higher at DO and increased at D28, accompanied by CAR T-cells with a
more naive phenotype and enrichment of dendritic cells. CD8* T cells at 3M had higher expression levels of genes associated with human bone marrow

residence/retention, such as CXCR4 and CD69, and the myeloma cell phenotype was different from baseline

potency. However, it is noteworthy that NK-like CAR
T-cell clusters are not pre-existing but rather that CD8"
CAR T-cells acquire NK receptors via plasticity during
prolonged antigen exposure. The causality of the tran-
sition and CAR T-cell dysfunction remains uncertain.
Another study delineated the landscape for comprehen-
sive and dynamic chromatin accessibility of CAR T-cells
derived from an in vitro tumor cell co-culture system
(0, 6 and 48 hours) via scATAC-seq [47]. Two subsets of
exhausted CAR T-cells were defined. One is intermedi-
ate exhausted CAR T-cells with enriched motifs of tran-
scription factors such as JUN, FOS, NFKB1, and BACH?2,
and the other is terminal exhausted CAR T-cells with
enriched motifs of BATF, IRF4, and PRDM1. Similar
changes in chromatin accessibility and transcriptional
regulation patterns of exhausted CAR T-cells were also

observed in patients. An in vitro experiment confirmed
that CAR T-cells with reduced BATF and IRF4 expres-
sion exhibited better persistence and enhanced killing
ability.

Deciphering and advancing the efficacy and safety
of CAR T-cell therapy

Primary resistance

Primary resistance refers to the inability to induce CR
after CAR T-cell infusion. A study performed a whole-
transcriptome scRNA-seq analysis of CD19 CAR T-cell
products from 24 large B-cell lymphoma (LBCL) patients
and found that exhausted CD4" and CD8" T cells were
enriched within infusion products (IPs) of patients with
partial response/progressive disease (PR/PD) 3 months
after infusion. Moreover, the lymphocyte activation 3
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(LAG-3) and TIGIT genes and the basic leucine zipper
ATEF-like transcription factor (BATF), inhibitor of DNA
binding 2 (ID2) and other failure-related transcription
factors were highly expressed. Nevertheless, patients
achieving CR had more memory CD8" T cells [88]. Other
scRNA-seq data obtained from relapsed/refractory B-cell
lymphoma patients before and after CAR T-cell infu-
sion suggested that the upregulation of the exhaustion
marker TIGIT in CAR T-cells was highly correlated with
a lower clinical response. Moreover, subsequent experi-
ments both in vitro and in vivo confirmed that block-
ing TIGIT could delay tumor progression and restore
the antitumor function of CAR T-cells. In the future,
immune checkpoint inhibitors against TIGIT may be the
key to improving the clinical response in patients [89].
In addition, CAR Treg cells are also involved in primary
resistance [70, 90]. Another scRNA-seq study deciphered
IPs and PBMCs derived from LBCL patients before and
after CAR T-cell infusion and found that the increasing
number of CAR Treg cells in IPs was positively correlated
with the nonresponse rate of patients. In vitro and in vivo
models showed that CAR Treg cells inhibited the anti-
tumor activity of CAR T-cells and led to tumor relapse
in mouse models [70]. Similarly, a study used CyTOF to
examine PBMCs from LBCL patients after CAR T-cell
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infusion and found that higher frequencies of cytotoxic
CD4" and CD8" subsets of CD57" T-BET" CAR T-cells
were associated with patients achieving CR, whereas
higher numbers of CD4" HELIOS* CAR T-cells with a
Treg cell phenotype were associated with disease pro-
gression. Furthermore, a logistic regression model that
combined the percentage of CAR Treg cells and the level
of lactate dehydrogenase (LDH) was a powerful predic-
tor of durable complete response versus progression [90]
(Fig. 4A).

Tumor cells can also induce primary resistance. Unbi-
ased genome-wide loss-of-function screens in B-ALL and
B lymphoma cell lines have revealed that tumor cells with
inherent dysregulation of death receptor signaling could
be resistant to CAR T-cell killing [91, 92]. Meanwhile,
reduced expression of death receptor genes (FADD, BID,
CASP8, and TNFRSF10B) was associated with patients
with no response [91]. scRNA-seq results confirmed that
the CAR T-cells from these patients expressed much
higher levels of exhaustion markers [91].

Relapse

Relapse, also called acquired resistance, refers to the phe-
nomenon in which patients who initially respond to CAR
T-cell therapy experience disease recurrence over time.
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The TME plays a considerable role in promoting tumor
relapse because of the expansion of the failure phenotype
and immunosuppression-related cells [93-95]. A study
leveraged multi-level single-cell sequencing technologies
to analyze BM samples from multiple myeloma (MM)
patients after B-cell maturation antigen (BCMA) CAR
T-cell treatment and analyzed its association with the
length of progression-free survival (PES) in the respond-
ers. They found that patients with a long PFS were usually
associated with the increased appearance of CLEC9A*
dendritic cells, CD27"TCF1* T cells and T cells express-
ing marrow-residence genes, while the expansion of
KLRG'HLA-DR" terminally differentiated T cells and
the appearance of the immunosuppressed BAFF'PD-L1*
myeloid cells were related to a short PES. In addition, the
residual myeloma cells tended to have less-differentiated
and stem-like characteristics, with upregulated epithe-
lial-mesenchymal transition (EMT) genes, which may be
related to tumor relapse [96] (Fig. 3B). Another scRNA-
seq study analyzed tumor tissue from glioblastoma
(GBM) patients before and after CAR T-cell therapy and
revealed that phenotype remodeling occurred in recur-
rent GBM after CAR T-cell therapy with a transition
from a mesenchymal-like (MES) phenotype to a mixed
MES-like, neural progenitor-like (NPC) and astrocyte-
like (AC) phenotype, suggesting that the coexistence of
cells characterized by different GBM subtypes under-
mined the efficacy of CAR T-cell therapy [97]. Similarly, a
scRNAseq study analyzed PBMC and BM samples before
and after CAR T-cell treatment in patients with mantle
cell lymphoma (MCL) and discovered that the number
of endogenous cytotoxic lymphocytes (CTLs) was sig-
nificantly decreased after relapse, while the expression of
the immune checkpoint TIGIT was high, which impaired
their killing ability. TIGIT was also highly expressed on
MCL cells. Cell-cell interaction showed that the interac-
tion between TIGIT on MCL cells and its ligand CD155
on CD16" monocytes significantly increased after
relapse, which might attenuate the ability of myeloid cells
to present tumor antigens and lead to weaker antitumor
immune surveillance. In conclusion, the acquired expres-
sion of TIGIT in CTLs and MCL cells may be a central
mechanism resulting in relapse in MCL patients [98].
In addition, further studies have focused on the distinct
mechanisms of relapse by investigating positive and neg-
ative relapse.

Positive relapse

Positive relapse refers to tumor relapse with targeted
tumor antigen expression, generally caused by limited
activation and expansion, as well as poor antitumor
potency and persistence of CAR T-cells in vivo [93, 94].
Single-cell sequencing technologies have not only vali-
dated the previously identified mechanisms but also
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helped to discover some entirely new mechanisms of pos-
itive relapse (Fig. 4B). Bai et al. [73] analyzed the IPs from
some ALL patients with CR and others undergoing posi-
tive relapse via scRNA-seq and found that a deficiency of
T2 function in CAR T-cells was associated with positive
relapse patients. Cytokine module analysis indicated that
T2 cytokine modules were enriched in CR patients and
absent in positive relapse patients. Differential expression
analysis also showed that except for the T};2 pathway and
Ty2-related genes, including IL-4, IL-5, IL-13 and the
upstream regulator GATA3, there was no significant dif-
ference in other immune programs, such as effector, acti-
vation, inflammation and chemokine modules, between
CR and positive relapse patients. Therefore, the mainte-
nance of Ty;2 function may be indispensable for the long-
term remission of patients receiving CAR T-cell therapy.
In addition to immune function, CITE-seq analysis
revealed that differentiated subsets of T cells could also
make a difference. Early memory-like T cell subsets Tqcy
and T, were significantly decreased in both resting and
activated CAR T-cells from positive relapse patients. Fur-
thermore, a prognostic model including three biological
indicators, CAR'T;;2" frequency, T, frequency, and
Teym + Tgp frequency, endowed good discrimination of
patients with positive relapse and long-term remission,
which may act as a biomarker for the prediction of risk
and clinical response of patients.

Negative relapse

Negative relapse refers to tumor relapse without targeted
tumor antigen expression [93]. The recognized mecha-
nisms include the selection of pre-existing antigen-neg-
ative tumor cells, mutation, splicing variation, lineage
switching-mediated target antigen loss and other factors
affecting the presentation and expression of target anti-
gens [99]. Several single-cell sequencing studies have
validated the natural selection theory of the presence
of antigen-negative tumor subclones before CAR T-cell
treatment [100, 101] and unveiled a new mechanism
for mediating negative relapse [102] (Fig. 4C). A study
performed scRNA-seq on CD10P*CD19P% cells and
CD10P*°CD19"¢ cells of BM from patients with B-ALL
before and after CAR T-cell treatment [101] and found
that the gene expression profiles of the CD19"°¢ B-ALL
cells detected before CAR T-cell treatment were simi-
lar to those of other B-ALL cells both before and after
CAR T-cell treatment but were significantly different
from those of other CD19" cells, such as NK cells and
myeloid cells. Moreover, CaSpER and Ballele frequency
(BAF) analysis showed that the potential pre-existing
CD19"¢8 B-ALL cells harbored genomic deletions in the
same chromosome location as the other B-ALL cells,
further confirming the presence of true B-ALL cells that
did not express CD19 before CAR T-cell treatment [101].
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Another study further characterized antigen-negative
expressing cells. The researcher applied bulk RNA-seq,
scRNA-seq and flow cytometry to describe the gene
expression of CD34" hematopoietic stem cell progenitor
(HSCP) development across healthy fetal, neonatal, and
postnatal samples and found that CD22 was expressed
before CD19, which is highly expressed in PreProB and
ProB progenitors. CD34*CD19°CD22" early/immature
progenitors were prevalent in patients with relapsed
B-ALL and increased the probability of relapse in patients
receiving CD19-targeted therapy. Fluorescence in situ
hybridization (FISH) showed that CD34*CD19 CD22*
early/immature progenitors in B-ALL patients carried
an oncogene lesion, and subsequent animal testing dem-
onstrated their ability to initiate leukemogenesis [100].
Since the initial number of antigen-negative expressing
cells is quite small, it is usually difficult to detect by flow
cytometry [101]. However, scRNA-seq can unambigu-
ously detect these scarce antigen-negative subclones and
thus can serve as an effective strategy for CAR T-cell
selection before cellular product infusion. Regarding
novel mechanisms leading to negative relapse, Im et al.
used live cell imaging and CD19-specific antibody fluo-
rescence and found that when CD19 CAR T-cells inter-
acted with B-ALL cells, the CD19 surface protein of
surviving B-ALL cells accumulated and internalized into
cells and subsequently downregulated CD19 expression
on the surface. This process is similar to the activation
of normal B cells [103]. scRNA-seq and scATAC-seq of
surviving leukemic cells co-cultured with CAR T-cells
showed that the leukemic cell subsets with the lowest
CD19 expression were significantly enriched for gene
expression and regulators correlated with B-cell activa-
tion signatures and germinal center reaction. Bruton’s
tyrosine kinase (BTK) inhibitors can inhibit this process
and enhance CAR T-cell killing ability [102].

Adverse events

CRS and ICANS

Cytokine release syndrome (CRS) is the most common
and severe toxicity of CAR T-cell therapy [104—108].
CRS is generally considered to be a systemic inflamma-
tory response induced by endothelial cell dysfunction,
abnormal activation of macrophages, and the release of
supraphysiological levels of various proinflammatory
cytokines [106—109]. Although IL-6 is recognized as crit-
ical for CRS [104—108], the main cellular source releas-
ing it remains unknown. An in vitro cytokine release
assay of cultured CAR T-cells found that IL-6 secretion
was closely related to monocytes, and the presence of
IL-6 in monocytes was confirmed by intracellular stain-
ing results. scRNA-seq performed on CD45" leukocytes
isolated from humanized mice that developed CRS after
CAR T-cell infusion confirmed that monocytes were
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the only cell population that consistently and specifi-
cally expressed high levels of IL-6. Overall, circulating
monocytes, but not CAR T-cells, were major sources of
IL-6 during CRS [108] (Fig. 4D). Moreover, single-cell
cytokine profiling revealed that higher product PSI was
associated with grade>3 CRS [58]. Compared to patients
with grade 0-1 CRS, patients with grade>2 CRS had a
higher PSI of CD4" CAR T-cells, especially PSI of IL-8
and MCP-1 [57], which are involved in the recruitment
of neutrophils and monocytes/macrophages [110, 111].
Moreover, PSI combined with CAR T-cell expansion or
pretreatment serum IL-15 levels was more indicative of
severe CRS [58].

Immune effector cell-associated neurotoxicity syn-
drome (ICANS) is another common toxicity related to
CAR T-cell therapy. Activation of endothelial cells in
the brain during inflammation and the destruction of
the integrity of the blood brain barrier (BBB) may play
a key role in the occurrence and development of ICANS
[104, 105, 112]. Single-cell sequencing technologies eluci-
dated the pathogenesis of ICANS (Fig. 4E). By analyzing
human brain scRNA-seq data, Parker et al. discovered
a rare population of cells that co-expressed CD19 and
CD248, the cell marker of mural cells. Specific expres-
sion of CD19 in mural cells was confirmed by exclusion
of B-cell confounding and immunohistochemistry of
several regions of the human brain. This described a pos-
sible mechanism for ICANS, namely, CD19 CAR T-cells
targeting mural cells, thus increasing BBB permeability
and causing circulating inflammatory cytokines and CAR
T-cells to enter the central nervous system (CNS) [113].
These findings may caution the use of intrathecal admin-
istration of CD19 CAR T-cells for primary CNS lym-
phoma. Another scRNA-seq study found that reactivated
human herpesvirus 6 (HHV-6) carried by CAR T-cells
may enter the CNS through OX40 receptors on BBB
endothelial cells, resulting in the development of HHV-6
encephalitis, which has similar symptoms and requires
differential diagnosis from ICANS [114]. Moreover,
single-cell sequencing technologies could also identify
some biomarkers from CAR T-cell products that predict
an increased risk of severe ICANS, such as ICANS-asso-
ciated cells (IACs) with a monocyte-like transcriptional
signature [88], an increased number of polyfunctional
CAR T-cells producing IL-17A [58], and low levels of
CD4"Helios* CAR T-cells [90].

On-target, off-tumor effects

On-target, off-tumor effects refer to CAR T cell-medi-
ated recognition and lysis of non-malignant tissues
expressing the target antigens because the antigens rec-
ognized by CAR T-cells are mostly tumor-associated
antigens (TAAs) expressed in both normal and malignant
cells [115]. The development of single-cell sequencing
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technologies has improved the resolution of target anti-
gen analysis, providing valuable guidance on on-target,
off-tumor effects evaluation (Fig. 4F). By integrating pub-
licly available scRNA-seq databases, the antigen expres-
sion profiles of CAR targets were delineated in normal
as well as malignant tissues, highlighting the importance
of identifying differential expression levels of target anti-
gens in patients before CAR T-cell therapy [116]. To fur-
ther search for potential off-target CAR antigens, Jing
et al. analyzed two single-cell databases, the human cell
landscape (HCL) and adult human cell atlas (AHCA),
and defined the CAR targets measurable in more than
100 nonimmune cells and more than 2% of the total cells
in at least three normal tissues as a potentially risky gene
(PRG) [117]. By employing this criterion, they identi-
fied PRGs neglected by bulk expression analysis, such as
EGFR, PSCA and KDR (VEGFR2), and suggested that
close surveillance was needed for early signs of off-target
toxicity [117]. Of note, Parker et al. discovered that even
0.15% (12/7906) CD19-measurable human brain mural
cells could lead to ICANS [113], but whether such a low
level of expression had toxic impact on other tissues
remained unknown. Moreover, different physiological
and disease states may also affect the expression of tar-
get antigens to some extent. Therefore, a comprehensive
atlas of human antigen expression is vital for understand-
ing the on-target, off-target effects, and follow-up experi-
ments may be needed to confirm the off-target toxicity.

Deciphering and advancing strategies for CAR
T-cell therapy

Combination therapy

Combining CAR T-cells with other therapies, including
chemotherapy, radiotherapy, hematopoietic stem cell
transplantation, and other immunotherapies, is regarded
as a promising strategy to overcome challenges and
enhance the effectiveness of CAR T-cell therapy [118,
119]. In a study, cyclophosphamide (Cy) and oxaliplatin
(Ox) were used innovatively to replace the conventional
chemotherapy regimen Cy and fludarabine (Flu) prior
to CAR T-cell infusion [120], which has been shown to
promote T cell infiltration into tumors [121]. scRNA-seq
profiles of murine lung tumors treated with Ox/Cy and
CAR T-cells revealed the expression of T-cell-recruiting
chemokine genes, including CXCL16 and CCL5, in mul-
tiple cell types in the TME, such as macrophages and
DCs, which facilitated early infiltration of CAR T-cells
into tumors partially through CXCR6 and CCR5. Sub-
sequently, IFN-y produced by tumor-infiltrating CAR
T-cells led to the recruitment and activation of iNOS*
tumor macrophages. As the main source of chemo-
kines, iNOS" macrophages upregulate the expression
of the CXCR3 ligands CXCL9 and CXCL10, binding to
CAR T-cells expressing CXCR3 to facilitate their further
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infiltration and therefore initiating a positive feedback
loop supporting CAR T-cell recruitment to tumors
[120]. A patient receiving this combination regimen also
achieved improved clinical responses [120]. Moreover,
stimulator of IFN genes (STING) pathway activation
enhanced T cell recruitment and effector cell function in
tumors [122]. Another scRNA-seq study combined the
STING agonists DMXAA/cGAMP with CAR T-cells to
treat mice with breast cancer. The results demonstrated
that compared to CAR T-cell infusion alone, DMXAA/
cGAMP could regulate the inhibitory TME by increas-
ing proinflammatory myeloid cells, reducing myeloid-
derived suppressive cells and increasing the expression
of chemokines that facilitated CAR T-cell recruitment
and persistence at the tumor site. In addition, it could
also promote the conversion of CAR T-cells to the pro-
inflammatory phenotype to improve antitumor effects
[123]. Furthermore, cyclin-dependent kinase 4 and 6
inhibitors (CDK4/6i) are widely used in cancer therapy
[124]. In addition to inhibiting tumor proliferation by
blocking the cell cycle [125], they were also found to pro-
mote the long-term antitumor effects of endogenous T
cells through immunomodulatory effects [126]. A study
combining scRNA-seq and CITE-seq found that T cells
in the spleen of mice pretreated with CDK4/6i upregu-
lated effector and memory-related genes, suggesting that
CDK4/6i might enhance the cytotoxic effects of T cells
and promote the differentiation of memory subsets that
maintain long-term antitumor immunity. The combina-
tion of CDK4/6i and CAR T-cells in ovarian cancer mice
significantly improved the effectiveness and persistence
of tumor control [126].

Engineered CAR T-cells

Designing innovative engineered CAR T-cells to optimize
CAR T-cell therapy is an important area to be explored
[127-129]. Single-cell sequencing technologies can help
to systematically evaluate the features of engineered CAR
T-cells. A study using genome-wide clustered regularly
interspaced short palindromic repeats (CRISPR) screen-
ing discovered that Ikaros family zinc finger protein 2
(IKZF2) and transducin-like enhancer of split 4 (TLE4)
may be linked with the functional suppression and
exhaustion of T cells, thus affecting the killing effects of
CAR T-cells on GBM stem cells. scRNA-seq performed
on IKZF2-KO (knockout) and TLE4-KO CAR T-cells
revealed that these cells displayed enhanced cytotoxic-
ity and immune stimulation transcriptional signatures
while prohibiting exhaustion, indicating their superior
effector function against tumor cells [130]. In addition,
two pilot studies used CRISPR-Cas9 gene editing tech-
nology for CAR gene transduction instead of traditional
viral transduction [131, 132]. scRNA-seq found that CAR
T-cells integrating the CAR gene at the T-cell receptor
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a constant (TRAC) locus and the PD1 gene locus both
expressed a memory-like phenotype and less exhaustion-
associated transcriptional signatures, which was related
to higher potency [131, 132]. Obviously, the site-directed
integration of CAR genes by CRISPR may be superior to
random insertion by viral vector transduction.

In addition, many studies have attempted to modify
engineered CAR T-cells to induce endogenous antitumor
immunity and thus reshape the TME. One study designed
a novel CAR T-cell (RN7SL1 CAR T-cell) that secreted
non-coding RNA RN7SL1 in the form of extracellular
vesicles (EVs), which would be preferentially taken up by
immune cells to enhance endogenous antitumor immu-
nity. scRNA-seq performed on tumor tissues of mice
infused with RN7SL1 CAR T-cells showed that RN7SL1
could reduce suppressive myeloid cell subsets, increase
inflammatory DCs expressing costimulatory genes, and
activate amplification of effector-memory endogenous
CD8" T cells. Supported by these features, RN7SL1 CAR
T-cells could perform an effective killing function even
in a poorly immunogenic tumor [133]. Similarly, scRNA-
seq suggested that CAR T-cells overexpressing superkine
IL-2 (Super2) and IL-33 (Super2® IL-33 CAR T-cells)
could induce the conversion of M2-like macrophages to
M1-like macrophages that highly express antigen presen-
tation genes in TME, upregulate the ratio between CD8"
effector T cells and immunosuppressive Tregs, recruit
and activate endogenous innate and adaptive immune
cells, including tumor-specific T cells. The increased
antitumor efficacy of Super2® IL-33 CAR T-cells was
observed in a variety of animal models [134].

Locoregional delivery of CAR T-cells

CAR T-cells are usually administered intravenously to
treat hematological malignancies, but for solid tumors,
locoregional and intratumoral CAR T-cell delivery are
also included [13, 135]. In the treatment of CNS tumors,
intracerebroventricular and intrathecal administration
of CAR T-cells has already shown positive outcomes in
both preclinical and early clinical trials [135-137], which
is probably related to the different microenvironments
of CSF compared to PBMCs [7, 138, 139]. Two studies
applying scRNA-seq and CyTOF respectively showed
that CAR T-cells exposed to CSF can promote the for-
mation of a memory-like phenotype through metabolic
reprogramming, resulting in higher antitumor activity
[138], and increase the expression of activation mark-
ers and trafficking/homing signatures, which may facili-
tate the migration of CAR T-cells to the CNS [140]. In
the clinical study by Majzner et al. [141], glioma patients
received a regional intracerebroventricular administra-
tion after the first GD2 CAR T-cell infusion through
the vein. In addition to further radiographic and clini-
cal benefits, local administration was associated with
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less systemic toxicity, such as CRS. Moreover, scRNA-
seq found that intracerebroventricular administration
reduced the number of myeloid cells with immunosup-
pressive properties compared with intravenous adminis-
tration. In the future, by analyzing the distinct properties
of CAR T-cells in PBMCs and CSF or monitoring the
regional T cell dynamics more closely related to the TME,
single-cell sequencing technologies may provide more
insights into the treatment of CNS tumors.

Perspectives for CAR target selection

An ideal CAR T-cell target has the following advan-
tages: (1) coverage: expression on the vast majority of
tumor cells; (2) specificity: tumor-specific expression and
minimal expression in healthy tissues; (3) stability: con-
tinuous and stable expression to avoid antigen escape
[142]. However, identifying suitable CAR T-cell targets
has been challenging, especially for solid tumors, due to
the co-expression of antigens between tumor cells and
non-malignant cells, as well as the highly heterogeneous
expression among tumor cells. Integrating single-cell
multi-dimensional omics data is a promising strategy for
CAR target selection.

Previous studies have integrated transcriptomics and/
or proteomics data from analyses of both malignant and
non-malignant tissues for target discovery [143-146].
Bosse et al. compared bulk RNA-seq results of neuro-
blastomas and normal tissues and identified Glypican 2
(GPC2) as a potential CAR T-cell target antigen, which
has significant differential expression and extracellular
epitopes [146]. However, bulk gene or protein expression
data reflect average differences across tissues. Single-cell
sequencing technologies with higher resolution can facil-
itate accurate identification of differentially expressed
markers of tumor cell subsets and even rare but impor-
tant tumor subsets, including cancer stem cells. Fur-
thermore, homogenous target antigen expression can be
assessed based on the fraction of tumor cells expressing
each antigen. However, the sequencing depth of single-
cell sequencing is still insufficient, and the average num-
ber of detected genes in a single cell is approximately
2000, with a massive amount of genes missing. With the
improvement of sequencing depth, single-cell sequencing
technologies may become a powerful tool for CAR target
selection.

After screening targets that are specifically overex-
pressed in tumor cells, the specificity of targets should be
verified via multi-organ single-cell atlases, such as HCL
[147] and human cell atlas (HCA) [148]. A data portal
(CARTSC) integrates HCL and HCA to visualize the
expression of CAR target expression in normal tissues at
the single-cell level [117]. At present, since most of the
single-cell atlases of human organs have been completed
and are available as open resources, the single-cell data



Huang et al. Molecular Cancer (2023) 22:80

of specific tissues can be directly obtained for expression
verification of CAR targets [149-153]. Based on integrat-
ing published scRNA-seq data of tumor and normal tis-
sues/organs, two recent studies systematically analyzed
the expression of CAR T-cell target antigens and captured
the rare cell types that had previously been omitted in the
evaluation of bulk tissues [116, 154]. Particularly, through
a machine-learning-based algorithm and the index ECF
(expressing cell fraction), Kwon et al. selected ideal gene
pairs for dual-target CAR T-cells that were controlled by
logical switches (that is, AND, OR and NOT), promoting
further tumor coverage and specificity [154].

The selected CAR T-cell target antigens require fur-
ther validation of target expression on the surface of the
cell membrane through proteomics techniques (such as
flow cytometry). In addition, it is necessary to evaluate
the target antigens in terms of function, immunogenicity,
clinical response and other aspects. In particular, CAR
T-cell products with novel targets need to be carefully
evaluated in rigorous preclinical studies and early clinical
trials.

Conclusions and future perspectives

Although CAR T-cell therapy has achieved tremendous
clinical success in hematological malignancies, challenges
including high manufacturing costs, disease relapse,
and adverse events remain to be overcome, and its effi-
cacy in solid tumors requires urgent improvement. The
application of single-cell sequencing technologies is a
prospect to address these challenges. Single-cell sequenc-
ing technologies have natural advantages in decipher-
ing CAR T-cell therapy since CAR T-cells are cellular
products and single-cell suspensions. Currently, single-
cell sequencing technologies mainly serve as evaluation
platforms for deciphering the biological characteristics
of CAR T-cell products and the therapeutic response
of patients after CAR T-cell infusion. When identifying
crucial cell populations and molecular features in cer-
tain pathophysiological processes, they can also provide
potential strategies to advance CAR-T cell therapy. In
addition, single-cell sequencing technologies have the
potential to screen ideal CAR targets with sufficient cov-
erage, high specificity and stable expression. Comprehen-
sive single-cell atlases of normal and diseased tissues can
be an effective tool for understanding off-target effects
and validating candidate targets. It is worth noting that
some limitations still exist in single-cell sequencing tech-
nologies [155], such as insufficient sequencing coverage
and depth, sequencing bias, and high overall cost. Batch
effect and data integration across experiments and differ-
ent sequencing platforms are areas of particular attention
that require continuous optimization and standardiza-
tion of the data processing and analytical pipelines. To
meet the demands of clinical accessibility, the accuracy,
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repeatability, stability and reliability of sequencing data
also need to be continuously optimized. Standardized
protocols for data analysis as well as physician-friendly
interfaces and software should be developed for clini-
cians. We anticipate that the research benefits brought by
single-cell sequencing technologies will push the limits of
technical development and accelerate the standardization
of computational analytical methods.

Based on the application and broad prospects of single-
cell multi-omics technologies in the field of CAR T-cell
therapy, we propose a multi-omics research mode to
facilitate high-quality research and further clinical trans-
lation of CAR T-cell therapy. First, the establishment of
a large clinical cohort and a complete sample library is
conducive to achieving a subsequent refined experimen-
tal design, including the collection of paired samples at
multiple time points before and after CAR T-cell treat-
ment and comprehensive clinical and prognostic charac-
teristics of patients, such as disease type, patient baseline
characteristics, CAR T-cell product type, infusion dose,
and clinical outcome [156]. Sample types include CAR
T-cell products, PBMCs, BM, tumors, CSF and target
organ tissues. Advanced single-cell multi-omics technol-
ogies can be used as a tool for research implementation,
including single-cell genomics, epigenomics, transcrip-
tomics, proteomics and spatial transcriptomics, enabling
target discovery, mutual validation of the experimental
results, and searching for upstream and downstream
molecules and pathways in multiple dimensions (Fig. 5A).
Based on the above premises and current progress, both
basic and clinical research can be guided by multi-omics
research mode. The former is dedicated to answering
questions about the basic biological characteristics of
CAR T-cells, such as the impact of the CAR structure,
functional phenotype and manufacturing process on the
final CAR T-cell product (Fig. 5B). Notably, from the per-
spective of cell types, analyzing the interaction among
CAR T-cells, endogenous immune cells, stromal cells and
tumor cells in the TME of BM and solid tumors would
help to explore the mechanisms of tumor cell immune
escape leading to relapse and to identify intervention tar-
gets. The latter is driven by clinical scientific questions,
such as relapse, adverse events, and clinical efficacy,
which are common in CAR T-cell therapy. Comparison
groups based on clinical outcomes can be set up to iden-
tify key differential cell populations and differentially
expressed genes to reveal potential mechanisms and
therapeutic targets, and functional validation can be con-
ducted in cells or animal models. Furthermore, research
applying multi-omics technologies in a large-scale clini-
cal cohort can also be conducted. Based on artificial
intelligence, machine learning algorithms, and unsuper-
vised and unbiased methods, detailed subgroup analysis
of patients’ clinical information would be performed to
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Multi-omics research mode for CAR T-cell therapy

A. Overview of the multi-omics research mode for CAR T-cell therapy
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Fig. 5 The multi-omics research mode for CAR T-cell therapy. (A) In the multi-omics research mode, a large clinical cohort with complete clinical
information as well as biological samples and single-cell multi-omics technologies would be combined to create multi-level metadata from micro to
macros, which provides guidance for the development of precision medicine. In the field of CAR T-cell therapy, integration of multi-dimensional omics
data promotes a comprehensive description of the molecular regulatory network during CAR T-cell functional processes, leading to the discovery of new
mechanisms and targeted treatment strategies for CAR T-cell therapy and thus bringing more insights into this field at both the basic and clinical levels.
(B) Basic research is dedicated to illustrating the basic biological characteristics of CAR T-cells, including the effect of each manufacturing stage on the
final cellular products, the heterogeneity in the evolution of functional phenotypes during the CAR T-cell functional process, the interaction between
CART-cells and various cells within the TME and the selection of suitable target antigens, which will advance the safety and efficacy of CAR T-cell therapy.
(€) Clinical question-driven research focus on tracing the reasons for different clinical outcomes (including resistance, relapse, and toxicities) in patients
treated with CAR T-cells. Grouping patients with different characteristics and comparing differences in metadata may bring more meaningful discoveries
and guide further improvement of CAR T-cell therapy, such as combination therapy and engineered CAR T-cells
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TME Tumor microenvironment

TRAC T-cell receptor a constant

VSV Vesicular stomatitis virus
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