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Abstract
Background  Approximately 15% of adult GIST patients harbor tumors that are wild-type for KIT and PDGFRα 
genes (KP-wtGIST). These tumors usually have SDH deficiencies, exhibit a more indolent behavior and are resistant 
to imatinib. Underlying oncogenic mechanisms in KP-wtGIST include overexpression of HIF1α high IGFR signaling 
through the MAPK pathway or BRAF activating mutation, among others. As regorafenib inhibits these signaling 
pathways, it was hypothesized that it could be more active as upfront therapy in advanced KP-wtGIST.

Methods  Adult patients with advanced KP-wtGIST after central confirmation by NGS, naïve of systemic treatment 
for advanced disease, were included in this international phase II trial. Eligible patients received regorafenib 160 mg 
per day for 21 days every 28 days. The primary endpoint was disease control rate (DCR), according to RECIST 1.1 at 12 
weeks by central radiological assessment.

Results  From May 2016 to October 2020, 30 patients were identified as KP-wtGIST by Sanger sequencing and 16 
were confirmed by central molecular screening with NGS. Finally, 15 were enrolled and received regorafenib. The 
study was prematurely closed due to the low accrual worsened by COVID outbreak. The DCR at 12 weeks was 86.7% 
by central assessment. A subset of 60% experienced some tumor shrinkage, with partial responses and stabilization 
observed in 13% and 87% respectively, by central assessment. SDH-deficient GIST showed better clinical outcome 
than other KP-wtGIST.

Conclusions  Regorafenib activity in KP-wtGIST compares favorably with other tyrosine kinase inhibitors, especially in 
the SDH-deficient GIST subset and it should be taken into consideration as upfront therapy of advanced KP-wtGIST.
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Introduction
Gastrointestinal stromal tumors (GIST) lacking muta-
tions in KIT or PDGFRα genes, formerly known as wild-
type GIST, represent around 10–15% of GIST in adults, 
while they represent 85% in pediatric population. This 
subset of GIST, henceforth referred to as KIT/PDGFRA 
wild-type (KP-wGIST), was considered to have low to 
null responsiveness to imatinib [1]. In the pre-era of next 
generation sequencing (NGS), an overall response rate 
of 25% and 37% was reported for KP-wGIST in patients 
enrolled in two different randomized phase III trials [2]. 
Furthermore, significantly shorter progression-free sur-
vival and overall survival was found in KP-wGIST, with 
hazard ratios of 0.37 and 0.40 respectively, when com-
pared with exon 11-mutant cases [3].

Although KP-wGIST constitute a heterogeneous 
group, they do display more chromosome stability than 
mutated GIST, hardly exhibiting genomic imbalances at 
all. A large recent series of 95 KP-wGIST cases found 
that succinate dehydrogenase (SDH)-competent GIST 
represented 12%, whereas SDH-deficient GIST was 88%. 
Within the latter, detectable by negative SDHB immu-
nohistochemistry, 75% had SDH mutations and 25% 
had methylation of the SDHC promoter [4]. The SDH-
competent subset encompasses a wide spectrum of gene 
mutations including more frequently BRAF, NF1, and 
less frequently CBL, ARID1A or NTRK genes, the later as 
fusion-type genomic alteration especially ETV6-NTRK3 
[1].

Neo-angiogenesis activation is a recognized underlying 
signaling in the most frequent KP-wGIST, SDH-deficient 
GISTs. Loss of function of SDH owing to mutational 
inactivation, or promoter inactivation by methylation, 
leads to the cytoplasmic accumulation of succinate which 
downregulates prolyl hydroxylase. This enzyme has a neg-
ative regulator role as regards HIF1α since it promotes its 
proteasomal degradation. Increased levels of HIF1α can 
enter the nucleus and activate the transcription of vascu-
lar endothelial growth factors (VEGFR). In fact, VEGFR 
expression is higher in KP-wGIST than in KIT mutant 
GISTs [5]. Additionally, IGFR1 is upregulated in the con-
text of SDH-deficient GIST by mechanisms not yet fully 
understood. IGFR signals through both the MAPK and 
PI3K-AKT pathways. Similarly, BRAF and NF1-mutant 
GISTs signal downstream through MAPK.

Regorafenib is an oral multikinase inhibitor of angio-
genic (VEGFR1-3, TIE2), stromal (PDGFR-b, FGFR), 
and oncogenic kinases (KIT, RET, RAF-1, BRAF, and 
BRAFV600E). A phase III trial showed the superiority 
of regorafenib over placebo in advanced GIST patients 

progressing to imatinib and sunitinib, with a median pro-
gression-free survival of 4.8 months vs. 0.9 months [6]. 
This study led to the registration of regorafenib in third-
line treatment of advanced GIST patients.

Regorafenib is a potent inhibitor of KIT and down-
stream phosphorylation (AKT, MAPK, S6). Furthermore, 
early interstitial Cajal cell (ICC) progenitors have a phe-
notype of KITlowCD44+CD34 + IGFR + while committed 
lineage progenitors have KIThighCD44+CD34-IGFR-. 
Unlike mature or more committed lineage ICCs, the 
KITlowCD44+CD34 + IGFR + display resistance to Ima-
tinib in spite of Kit signaling pathway activation. Inter-
estingly, at least 50% of KP-wGIST overexpress IGFR1. 
This overexpression could correlate with SDH deficiency 
due to the IGF autocrine loop [7]. IGFR signals through 
the MAPK pathway, among other signaling pathways, 
that might be inhibited by regorafenib at different levels. 
Taken together, the previous information indicates that 
regorafenib may be more advantageous than imatinib for 
advanced KP-wGIST patients as upfront therapy.

A phase II trial was then designed to explore rego-
rafenib in the first-line treatment of advanced KP-wGIST, 
screened by NGS, with the cooperation of Spanish, 
French and Italian sarcoma groups.

Methods
Study design and participants
In this phase II trial, adult patients (≥ 18 years) with 
metastatic KP-wGIST who were naïve of systemic treat-
ment for advanced disease, were enrolled in 15 tertiary, 
expert sarcoma centers in Spain, France and Italy. Other 
relevant inclusion criteria were histological confirmation 
by central pathology review, as well as central molecular 
confirmation of wild-type condition in KIT and PDG-
FRA genes by next generation sequencing technology. 
Subjects, with an Eastern Cooperative Oncology Group 
(ECOG) Performance Status of 0 or 1, must have at least 
one measurable lesion according to RECIST v1.1 criteria. 
Patients had to provide written, informed consent before 
study-specific procedures or assessments were made and 
had to be willing to comply with treatment and follow-
up. Informed consent was obtained before the start of the 
screening process. Approval from the ethics committee 
of each participating center was obtained before study 
initiation.

Some relevant exclusion criteria were any prior sys-
temic treatment for metastatic GIST. Patients that have 
received imatinib in an adjuvant setting are eligible only if 
they have relapsed after a minimum of 2 years from end-
ing treatment with imatinib. Cancers other than GIST 
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within 5 years prior to randomization except for cura-
tively treated cervical cancer in situ, non-melanoma skin 
cancer, and non-invasive superficial bladder tumors. A 
protocol amendment allowed for the accrual of patients 
previously treated with imatinib.

Patients received 160 mg (4 × 40 mg film-coated tablets) 
of regorafenib, once a day for 3 weeks, in 4-week cycles. 
If dose reduction of regorafenib was necessary because 
of toxicity, the dose would be reduced stepwise by 40 mg 
at each step. Two dose-level reductions were considered, 
120 mg (-1) and 80 mg (-2) per day. If the subject needed 
more than 2 dose-level reductions, treatment should be 
discontinued. If the toxicity was abated with dose reduc-
tion up to grade 0 or 1 and, at the discretion of the inves-
tigator, was considered safe, the regorafenib dose would 
then be increased stepwise. Dose interruptions were 
planned and detailed by the protocol for general tox-
icities, and specifically for skin, blood pressure and liver 
toxicities.

Treatment with regorafenib was continued until any 
of the following events occurred: RECIST progression, 
unacceptable toxicity, patient considered non-compli-
ant with the protocol requirements by the investigator 
or sponsor, withdrawal of consent, or a delay in rego-
rafenib administration of longer than 4 weeks. Adverse 
effects were graded according to CTCAE 4.03 and were 
monitored once every 4 weeks. Radiological assessments 
of target and non-target lesions were evaluated every 8 
weeks by CT scans. Tumor density was determined by 
indicating the CT attenuation coefficient in Hounsfield 
units (HU) captured in portal phase. Central radiology 
review was mandatory at the end of the study. All centers 
had to upload their CT scans, in an anonymous way, to a 
web-based imaging platform.

The main endpoint was disease control rate (DCR) last-
ing for at least 12 weeks, and secondary endpoints were 
progression-free survival (PFS), overall survival (OS), 
overall response rate (ORR) by RECIST 1.1 and Choi cri-
teria, safety and quality of life.

Statistical design
To estimate the sample size, a single-stage phase II clini-
cal trial based on exact (binomial) tests has been used. 
The main endpoint will be to assess DCR taking into 
account the historical control with imatinib in wild-
type GIST. Therefore, in H0, p0 will be taken as 73% 
(0% CR + 23% PR + 50% SD) [8]. H1 would be to achieve 
a DCR of p1 = 90% with regorafenib. Using error rates 
alpha 0.1 and beta 0.20. The total number of patients is 
estimated at 23 evaluable patients.

Central pathology review and DNA sequencing
An external central pathology review was performed 
based on tumor hematoxylin-eosin staining and positive 

immunostaining for DOG1 and/or CD117 (c-KIT) anti-
bodies (Roche; Basel, Switzerland).

For KIT and PDGFRA mutational screening, DNA 
was isolated from 3 sections of 5-µm thick FFPE sam-
ples using the QIAamp® DNA Investigator kit (Qiagen, 
Hilden, Germany) as indicated in the manufacturers’ 
instructions. When the tumor content was lower than 
30%, a microdissection of the area with higher tumor 
content was performed. DNA concentration was fluo-
rometrically measured by using the Quant-iT™ Pico-
Green™ dsDNA Assay Kit (ThermoFisher, Hamburg, 
Germany). The libraries were prepared using the Solid 
Tumor Solution (STS) gene panel from Sophia Genetic-
sTM, following the manufacturer’s recommendations. 
Briefly, 50 ng of extracted DNA were enzymatically frag-
mented to a size between 200 and 800  bp. The custom 
panel interrogates hot spots from 42 actionable genes 
associated with solid tumours, including exons 8–11, 13, 
17 and 18 of KIT (NM_000222.2) and exons 12, 14 and 
18 of PDGFRA (NM_006206.5). Pooled libraries were 
sequenced (2 × 150  bp, paired-end) on a NextSeq550 
instrument (Illumina™). Variant calling and annotation 
were performed by Sophia DDMTM platform. Variants 
were selected based on the following parameters: cover-
age > 600x, allelic frequency (AF) > 10% and annotation 
of pathogenic and/or likely pathogenic. Visualization of 
variants was performed with the Integrative genomic 
viewer (IGV) software from de Broad Institute (https://
software.broadinstitute.org/software/igv/).

For genetic testing beyond KIT and PDGFRA, post 
hoc somatic mutational status characterization was 
performed using a customized NGS panel. Briefly, the 
targeted gene panel was designed using an AmpliSeq 
Custom DNA Panel (Illumina, San Diego, CA, USA), 
including the following genes: VHL, RET, SDHA, SDHB, 
SDHC, SDHD, SDHAF2, SDHAF1, MAX, HIF1A (exon 
12), HIF2A (exon 12), TMEM127, HRAS, KRAS, NF1, 
GOT2, FH, MDH2, SLC25A11, DNMT3A (exon 8), 
DLST (exon 14), MERTK (exon 17), IDH1, IDH2, CSDE1, 
EGLN1, EGLN2, BRAF (exon 15), MET (exons 14–21), 
FGFR1 (exons 12 and 14), KIF1B, CDKN1B, MEN1, 
PTEN, H3F3a and ATRX. The panel was used according 
to the manufacturer’s instructions, starting with 200ng of 
DNA. Interpretation of variants was performed following 
the recommendations of the NGS in PPGL Study Group 
and the American College of Medical Genetics and 
Genomics-Association for Molecular Pathology guide-
lines, and mutations detected were confirmed by Sanger 
sequencing.

Statistical design for translational study
Variables following binomial distributions (i.e.: response 
rate), were expressed as frequencies and percentages. 
Comparisons between qualitative variables were made 
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using the Fisher Exact Test or Chi-square, with Yates’ 
continuity correction when necessary. Comparisons 
between quantitative and qualitative variables were per-
formed through non-parametric tests (U of Mann-Whit-
ney or Kruskal-Wallis). Time to event variables (OS and 
PFS) were measured from the date of therapy onset and 
were estimated according to the Kaplan-Meier method. 
Comparisons between the variables of interest were 
performed by log-rank test. Median follow-up was cal-
culated using the reverse Kaplan-Meier estimator. All 
p-values reported were 2-sided, and statistical signifi-
cance was defined at p < 0.05.

Results
From May 2016 to October 2020, 30 advanced GIST 
patients, with no mutations found by Sanger sequenc-
ing in KIT or PDGFRA genes, were centrally screened 
using NGS. Sixteen patients were confirmed by NGS as 
KP-wGIST and were eligible for the study, although one 

patient declined to participate as the diagnosis was coin-
cident with the SARS-CoV-2 pandemic. Thus, a total of 
15 patients were enrolled and received regorafenib, less 
than initially estimated since the trial was prematurely 
closed due to the low accrual worsened by the COVID 
outbreak (Additional File 1). The clinical cutoff for the 
final data analyses was November 9, 2021. At that time 
2 patients were still receiving regorafenib (25 + and 
43 + months from treatment initiation), whereas 13 had 
discontinued the treatment, 8 because of progression, 2 
patients refused to continue with regorafenib, 2 patients 
due to toxicity (one with G4 Steven-Johnson syndrome at 
day 13 of the first cycle and another with G5 gastric hem-
orrhage at day 8 of the first cycle) and 1 patient because 
of surgical rescue. A 16-year old female patient was 
allowed to be accrued, through a waiver, after obtaining 
her signed informed consent along with the agreement of 
her parents.

The median age was 57 years (16–72), without any 
predominant gender (8 female and 7 male patients). 
Tumor locations were distributed as follows: gastric 10 
(67%), intestinal 2 (13%) and mesenteric 3 (20%). In 9 
patients, an SDH-deficient GIST was detected by immu-
nohistochemistry, 5 of them harbored mutations in the 
SDH gene and 1 had a variant of uncertain significance 
(VUS), according to ClinVar, in the fumarate hydratase 
(FH) gene (Additional File 2). In 6 patients with SDH-
proficient GIST, mutations were found in BRAF, NF1 
and MAX genes in one patient each. No mutations were 
detected in 2 patients and 1 case was not evaluable due to 
an exhausted paraffin block. All 9 SDH-deficient GISTs 
had a gastric location. At baseline 13 patients were meta-
static and 2 were locally-advanced, considered unresect-
able. Other demographics are depicted in Table 1.

A total of 220 1-month cycles of treatment were given 
to the 15 enrolled patients with a median of 9 (0.3–55) 
cycles per patient. Dose reductions and dose interrup-
tions were registered in 8 (53%) and 14 (93%) patients, 
respectively. The median dose intensity for regorafenib 
was 74% (4-100%). At baseline, 5 (33%) patients had pre-
viously received imatinib, 4 of which were in the adju-
vant setting. The patient that had received imatinib in the 
advanced disease was accrued as RECIST progression, 
as were the 6 cases that had a metastatic recurrence. The 
remaining 8 cases that presented as advanced disease 
were enrolled at the time of diagnosis without a watch-
and-wait period.

The most frequent secondary adverse events of any 
grade in the 15 accrued patients were hypertension 
(66.7%), fatigue (60%), diarrhea (46.7%), anorexia (40%) 
and cutaneous rash (40%). The most common grade 3 
and 4 toxicities were increased alanine aminotransferase 
concentration (20%), increased aspartate aminotrans-
ferase (13.3%), hypertension (13.3%), palmar-plantar 

Table 1  Patients demographics (n = 15)
N (%)

Median age at diagnosis (range) 56 (16–72)

Median age at enrollment (range) 57 (16–72)

Gender

  - Male
  - Female

7 (47%)
8 (53%)

ECOG at baseline:

  - 0
  - 1

10 (67%)
5 (33%)

Median tumor size (range) at diagnosis (mm) 60 (13–250)

Tumor extension at diagnosis:

  - Localized
  - Locally advanced
  - Metastatic

6 (40%)
2 (13%)
7 (47%)

Tumor extension at enrollment:

  - Locally advanced
  - Metastatic

2 (13%)
13 (87%)

IHC-SDH:

  - Positive
  - Negative
  - Not available

5 (33%)
8 (53%)
2 (13%)

Any mutation:

  - Yes
  - No
  - Not available

10 (67%)
4 (27%)
1 (6%)

SHD mutation:

  - SDH
  - Other gene
  - No mutation
  - Not available

6 (40%)
4 (27%)
4 (27%)
1 (6%)

Any alteration in any gene:

  - Yes
  - No

12 (80%)
3 (20%)

Any alteration in SDH:

  - Yes
  - No

9 (60%)
6 (40%)
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erythrodysesthesia (13.3%) and anorexia (13.3%). While 
the most frequent hematological toxicity was anemia 
(20%), followed by lymphocytopenia (13.3%). No grade 
3 or 4 neutropenia or thrombocytopenia were observed 
(Additional File 3).

Based on RECIST criteria and central radiology assess-
ment, 2 (13%) patients had partial response (Additional 
File 5), and 13 (87%) had stable disease. DCR lasting at 
least 12 weeks, by central assessment, was 86.7% (Fig. 1). 
Nine (60%) patients achieved some dimensional decrease 
following regorafenib, being the median and mean 
of tumor shrinkage in these patients of 12 and 16.5% 
respectively (Additional Fig.  6). Furthermore, following 
Choi criteria, 8 (57%) patients had partial response, and 
6 (43%) had stable disease out of 14 evaluable patients for 
this criterion (Additional File 6). The median of tumor 
density decrease was 20%.

With a median follow up of 42 months (95% CI 28–56), 
the median of PFS in accordance with central review 
was 11 months (95% CI, 0.79–21.21) by RECIST and 
14.9 months (95% CI, 0–47) by Choi criteria (Additional 
File 7). The median of OS was not reached at the time of 
analysis.

No significant correlation was found between SDH-
deficient GIST and clinical outcome with the exception 
of a longer PFS, according to Choi criteria (Additional 
File 8 and Additional File 9) that favored the SDH-
deficient subset, 11 months (95% CI, 3.3–18.6) vs. not 

reached (NR)(p = 0.04). However, SDH-deficient GIST 
also displayed a trend towards a longer PFS following 
RECIST central assessment NR vs. 11 months (p = 0.20). 
In addition, SDH-deficient GIST showed a trend toward 
a longer OS compared with SDH-proficient GIST, NR vs. 
28.7 months (p = 0.31) (Additional File 8). All SDH-defi-
cient GIST showed KIT immunoreactivity, while 8 out 
of 9 (89%) displayed DOG1-positive immunostaining. 
BRAF-mutated GIST showed a PFS of 3.45 months, while 
NF1-mutated GIST had a PFS of 0.92 months, according 
to central radiological assessment.

Discussion
In this phase II trial, we found that 86.7% of 15 patients 
treated with regorafenib, mainly as upfront therapy of 
advanced disease, had DCR at 12 weeks, while 13% and 
54% had partial response according to RECIST and Choi 
criteria respectively and according to central radiology 
review. Moreover, the 20% decrease in median tumor 
density, and the fact that 60% of patients experienced 
some tumor shrinkage suggest activity of regorafenib in 
KP-wGIST, even when the study was prematurely closed.

The activity of imatinib reported in the context of KP-
wGIST has fluctuated from 23% in the pre-NGS era [8] 
to 2% in the post-NGS era [4]. In another study, after 
resequencing with NGS, authors reported 1 (8%) par-
tial response in 12 SDH-mutant GIST patients treated 
with imatinib [9]. Progression-free survival reached with 

Fig. 1  Swimmers plot for progression-free survival according to RECIST central radiological review. Each bar represents one patient. Red arrows identify 
patients with absence of progression at the last radiological follow up. The vertical line represents the median progression-free survival for the whole 
series
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imatinib also seemed overemphasized in the pre-NGS 
period, 13 months,[2] compared with 9 months in the 
subset of SDH-deficient KP-wGIST in the post-NGS era 
[9]. Even when no clear data is available regarding DCR 
in KP-wGIST patients sequenced by NGS and treated 
with imatinib, 73% could also be overemphasized [8]. 
In any case, this outcome is lower than 100% for DCR, 
achieved with regorafenib in our study. Indeed, DCR ≥ 12 
weeks seems to be an unsatisfactory endpoint in the 
context of certain indolent disease such as KP-wGIST. 
Another series with 6 SDH-deficient GIST patients also 
found a 100% clinical benefit rate [10]. Neither do we 
have prospective data of Choi responses with imatinib 
in KP-wGIST patients screened by NGS, which makes it 
more difficult to make indirect comparisons. Retrospec-
tive data on regorafenib in 28 GIST patients found 29% 
Choi partial responses, which was clearly superior to 
the 4% detected by RECIST. In that series, 2 out of 3 KP-
wGIST reached partial response according to Choi crite-
ria [11].

When we consider the 9 SDH-deficient patients in our 
series, 2 (22%) RECIST partial responses and 7 (78%) 
cases of stable disease were centrally detected. All of 
them were gastric and almost universally expressed pos-
itive-KIT and DOG1-positive immunostaining. In line 
with our findings, regorafenib achieved a median PFS of 
42.9 months in a retrospective series of SDH-deficient 
and likely SDH-deficient GIST. In the same study, authors 
reported a median PFS of 14.7 and 18 months for ima-
tinib and sunitinib respectively [12]. A phase II trial with 
regorafenib in advanced and progressing GIST patients, 
after imatinib and sunitinib failure, included 6 SDH-defi-
cient GIST that obtained a clinical benefit rate of 100% 
and 2 of them reached a partial response [10]. A phase II 
trial testing linsitinib reported a 9-month PFS rate of 52% 
and a 9-month CBR of 40% in 15 SDH-deficient GIST 
patients. Our results with regorafenib were 67% for both 
outcomes, comparing favorably with linsitinib. Further-
more, it has been published that patients harboring SDH 
mutants involving subunit A had a longer overall survival 
[13]. We could not confirm this difference, since only 3 
cases with this mutation were detected in our series.

Sunitinib induced no responses and provided a clini-
cal benefit rate of 56% in 9 patients classified as KP-
wGIST. The trial explored sunitinib in phase I/II with 
imatinib-resistant GIST patients [14]. By contrast, 4 of 38 
(10.5%) patients with SDH-deficient GIST patients from 
a retrospective observational study experienced RECIST 
responses with sunitinib [4]. Pazopanib induced disease 
control over 17 months in a SDH-deficient GIST patient 
included in a phase I/II trial, another similar patient 
dropped out the study in the first cycle due to toxicity 
[15]. Together with the previous information, we could 
speculate that drugs with antiangiogenic properties 

exhibit more activity in SDH-deficient KP-wGIST than 
imatinib. The longer PFS, statistically significant by Choi 
criteria in our study, and OS, not reaching statistical sig-
nificance probably due to the low number of cases, favor-
ing the SDH-deficient subset could be due to the more 
indolent tumor biology and not necessarily to the antian-
giogenic effect.

The fact that 47% of supposed KP-wGIST by Sanger 
were really KIT or PDGFRα mutant GISTs after NGS 
sequencing has hindered the expectancy of recruitment 
and, in the end, this has resulted in a premature closure 
of the study. Likewise, other authors found substantial 
discrepancies between Sanger and NGS sequencing for 
classifying KP-wGIST. In fact, Sanger sequencing overes-
timates KP-wGIST in a range of between 20% and 41% 
[16]. Actually, some cases of good and long-responders 
to imatinib in the context of supposedly KP-wGIST were, 
in reality, KIT (or PDGFRA) mutant GISTs after deeper 
sequencing. Moreover, some GIST complex insertions/
deletions, among other genomic alterations, could not be 
identified by routine NGS.

Another limitation of the study was the low compliance 
regarding quality-of-life questionnaires, probably related 
to the academic nature of the study, due to budget con-
straints limiting on-site monitoring. The almost univer-
sal temporal discontinuations (93%) indicated that the 
treatment is toxic and required reduction adjustments in 
almost half of the patients (53%). This was in line with the 
accumulated experience with regorafenib in the third line 
of advanced GIST patients, where it is difficult to main-
tain the dose of 160 mg per day.

In conclusion, KP-wGIST represents an uncommon 
subset within GIST patients, rarer than initially expected 
using Sanger sequencing. Within this heterogeneous 
population, regorafenib activity compares favorably with 
other tyrosine kinase inhibitors especially in the SDH-
deficient GIST subset, and consequently it should be 
taken into consideration as upfront therapy of advanced 
KP-wGIST patients.
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