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(measured by biological tests and clinical status) can be 
uncoupled from each other [3, 4]. A young biological age 
is linked to a reduced risk of malignant disease [5, 6]. For 
this reason, it may even be argued - in a polemic fash-
ion - that aging is a modifiable risk factor of cancer. This 
speculation is apparently supported by epidemiological 
data indicating that lifestyle factors that slow the aging 
process - such as leanness, an equilibrated mostly plant-
based diet, voluntary physical activity and the avoidance 
of environmental mutagens - also reduce the probability 
to develop malignant disease [7, 8]. This observation sug-
gests - but does not prove - that aging and cancer share 
common causes that are influenced by lifestyle or, in a 
slightly different vision, that manifest aging precipitates 
the development of clinically detectable tumors that then 
develop as ‘age-related diseases’.

In this review, we will examine the mechanistic connec-
tions between aging and malignant disease (Fig.  1). We 
will first discuss arguments in favor of the null hypothesis 

Introduction
Aging is the most important risk factor of malignant dis-
ease, the prevalence of which dramatically increases as 
adults age, reaching a peak around 85 or 90 years, when 
the incidence of new cancer diagnoses starts to decline 
and that of cardiovascular and other diseases ramps up 
[1, 2]. Aging is, to some degree, modulable, meaning that 
chronological age (measured in years) and biological age 
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Abstract
Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and 
cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the 
idea that aging and cancer share common mechanistic grounds that are referred to as ‘hallmarks’. Indeed, several 
hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and 
cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining 
why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss 
the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular 
and supracellular functions that accompanies aging produces cancer as a byproduct or ‘age-associated disease’. 
Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been 
documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude 
that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, 
as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an 
important parameter that must be considered for therapeutic decisions.
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(Fig. 1A), namely, that aging and cancer just coincide as 
we become older because both are time-dependent pro-
cesses but do not necessarily share a common biologi-
cal basis. This null hypothesis would be in line with the 
existence of childhood cancers and progeroid (i.e., aging-
accelerating) syndromes that do not increase the likeli-
hood to develop cancer. We will then examine the likely 
more broadly applicable hypothesis that aging and cancer 
have common mechanistic grounds, as supported by the 
idea that both these processes share molecular and cel-
lular characteristics that have been referred to as ‘meta-
hallmarks’ or ‘agonistic hallmarks’ (Fig.  1B). However, 
this hypothesis does not explain why very old age (> 90 
years) is accompanied by a reduction of the incidence of 
cancers, perhaps because certain ‘antagonistic hallmarks’ 
of aging counteract carcinogenesis (Fig. 1C). There is also 
the possibility that aged tissues are more susceptible to 
the development and clinical manifestation of cancers 
that then develop as a consequence of biological aging 
(Fig.  1D). Conversely, cancer and its treatment with 
chemotherapy and radiotherapy can precipitate aging, 
reducing healthspan and lifespan, as this is well docu-
mented for childhood cancer survivors (CCSs) as well as 

for survivors of cancers treated during adolescence and 
young adulthood (Fig.  1E). Finally, we will discuss the 
importance to weigh therapeutic decisions as a function 
of the oncological patient’s biological age.

The null hypothesis: no causal links between aging 
and cancer
Although most malignancies manifest in older adults 
(> 65 years) [1, 2], there are specific cancers that are 
diagnosed during childhood or adolescence without any 
accompanying signs of accelerated aging or the simul-
taneous development of other age-associated disorders 
such as cardiovascular and neurodegenerative diseases. 
Such early cancers are comparatively rare (~ 1 in 5000 
of the under 20-year-old, accounting for just 1% of all 
cancer diagnoses) and mostly manifest as non-epithelial 
malignancies (e.g., leukemias, central nervous systems 
cancers and lymphomas), contrasting with older adults 
that preponderantly develop carcinomas, and appear 
uncoupled from the aging process [9, 10]. Conversely, it 
can be argued that such early-life cancers (as exemplified 
by germ cell tumors, hepatoblastomas, medulloblasto-
mas, neuroblastomas, osteosarcomas, retinoblastomas, 
rhabdomyosarcomas, and Wilms tumors) have a peculiar 
molecular etiology, distinguishing them from the tumors 
developing in older adults. In addition, each of these 
malignancies peaks at a different age (1–2 years for neu-
roblastoma, 3–4 years for Wilms tumor, 5 years for rhab-
domyosarcoma…) suggesting an association with specific 
developmental stages rather than cumulative alterations 
that occur during classical (i.e., age-associated) oncogen-
esis. In any case, it appears that a specific subgroup of 
cancers is uncoupled from aging.

Dissociation of aging and cancer is also observed for 
specific progeroid syndromes, i.e., genetically disorders 
resulting in premature and accelerated aging [11]. In 
sharp contrast with several progeroid syndromes caused 
by defects in DNA repair (e.g. Bloom syndrome, Werner 
syndrome and Xeroderma pigmentosa, XP), which are 
linked to the early manifestation of cancers that often 
occur in an organ-specific fashion (e.g. leukemia and 
lymphoma in Bloom syndrome; thyroid cancer, skin can-
cer, and sarcoma in Werner syndrome; ultraviolet light-
induced skin cancer in XP) [12–14], other progeroid 
syndromes are not associated with any type of early carci-
nogenesis. Thus, trichothiodystrophy, which is caused by 
mutations in genes that are also mutated in XP (ERCC2, 
ERCC3) and do not only compromise DNA repair (as 
this occurs in XP) but also impair transcription (as this 
does not occur in XP), is not associated with malignant 
disease [15]. Similarly, Cockayne syndrome, which is 
caused by mutations affecting the transcription-coupled 
repair branch of the nucleotide excision repair pathway 
(ERCC6, ERCC8), photosensitizes the skin (as this applies 

Fig. 1  Potential relationship between aging and cancer. (A) Aging and 
cancer may lack a direct relationship and may rather be driven each inde-
pendently by time (null hypothesis). (B) Agonistic drivers may cause aging 
and cancer in a time-dependent fashion. (C) Antagonistic drivers may 
favor aging while reducing the probability of carcinogenesis and tumor 
progression. (D) Aging tissues and organisms may be more prone for the 
development of cancers. (E) Cancer and its treatment may precipitate the 
deterioration of health and the aging process
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to XP as well) but does not cause causer, likely because 
mutated cells are eliminated before they can transform to 
a malignant state [16].

The dissociation of accelerated aging phenotypes 
and cancer also applies to defects in lamin A/C, e.g. 
Hutchinson-Gilford progeria syndrome (HGPS) due 
to mutations in lamin A encoded by LMNA or its pro-
tease STE24 encoded by ZMPSTE24 [17]. As any other 
progeroid syndrome, HGPS causes segmental aging, i.e., 
an incomplete acquisition of aging phenotypes in only a 
few organ systems. Thus, HGPS patients develop some 
signs of aging (such as alopecia, wrinkled skin, osteopo-
rosis, kidney failure, impaired vision and cardiovascular 
disease including atherosclerosis) but not others (such as 
cancer and neurodegeneration) during their infancy [18]. 
Similarly, Néstor–Guillermo progeria syndrome caused 
by BANF1 mutations is associated with an aged appear-
ance and skeletal abnormalities but not others (such as 
cancer, diabetes, cardiovascular and neurodegenerative 
diseases) [19]. Thus, several progeroid syndromes do not 
lead to an increase in the incidence of cancers. However, 
given the extreme rarity of these syndromes (e.g., 1 in 10 
to 20 million children for HGPS), it may be argued that 
they constitute again ‘exceptions that confirm the rule’. 
Moreover, the premature death caused by progeria (i.e., 
usually before 20 years in HGPS due to cardiovascular 
disease), might ‘hide’ their pro-oncogenic potential.

In conclusion, there is evidence that, in rare instances, 
aging phenotypes and cancer development can be uncou-
pled from each other. This applies to specific progeroid 
syndromes that, however, cause incomplete (segmental) 
aging, as well as to a specific array of cancers developing 
in children and adolescents that are molecularly different 
from tumors developing in older adults.

Common superior causes of aging and cancer
In contrast to the aforementioned exceptions, carcino-
mas, which constitute the most frequent category of 
cancers, as well as most glioblastomas, leukemias, lym-
phomas, melanomas and sarcomas, usually manifest 
at the age > 50 (in > 90% of all cases) and demonstrate a 
steady increase of incidence until the age of 85 years 
[1, 2]. Correlative evidence indicates that lifestyle fac-
tors that reduce biological aging also postpone or avoid 
the manifestation of cancer [20]. This applies to healthy 
lifestyles that increase organismal fitness including (i) a 
diverse, mostly plant-based diet based on natural ingre-
dients (rather than highly processed foods, which are 
intrinsically toxic), avoiding overweight, obesity, hypovi-
taminoses, a deficit or surplus in oligoelements, as well 
as intestinal dysbiosis [21–23]; (ii) moderate or intense 
voluntary physical activity eluding excessive sedentarism, 
sarcopenia as well as osteoarthritis [24, 25]; (iii) avoidance 
of mutagenic toxins including excessive sun exposure, 

radiation, environmental poisons, air pollutants, tobacco 
and alcohol consumption [26, 27]; and (iv) psychosocial 
integration, which is often overlooked, yet essential for 
somatic health, in line with the fact that mental wellbe-
ing and socioeconomic status are major determinants 
of healthspan, lifespan and the odds of cancer morbid-
ity and mortality [28]. In accord with these observations, 
large epidemiological studies reveal that clinical factors 
for the most important age-associated ailments, i.e., can-
cer and cardiovascular disease, largely overlap [29, 30]. 
Of note, polygenic risk scores can predict the onset of 
both common cancers (such as mammary and prostate 
carcinoma) and cardiometabolic diseases [31].

The aforementioned associations between aging, can-
cer and cardiovascular disease suggest - but do not prove 
- that these conditions are dictated by common superior 
causes. What are then the hypothetical pathways that link 
such overarching mechanisms of aging and cancer? Such 
pathways can be tentatively identified among the ‘hall-
marks’ of aging [3] and cancer [32], which do not only 
accompany the relevant processes but also accelerate 
them if they are experimentally or accidentally induced 
and, on the contrary, decelerate, halt or reverse aging as 
they simultaneously prevent carcinogenesis if they are 
attenuated by genetic or pharmacological manipulations 
[3, 32]. Several hallmarks of aging (i.e., genomic insta-
bility, epigenetic alterations, chronic inflammation and 
dysbiosis) are also described as hallmarks of cancer and 
hence constitute common ‘meta-hallmarks’ or ‘agonistic 
hallmarks’ [33] (Fig. 2).

Genomic instability
Mutations affecting chromosomal DNA occur sponta-
neously as well as in response to exogenous mutagens, 
resulting in a progressive, age-dependent accumulation 
of genomic alterations [34]. Next-generation sequencing 
of DNA extracted from circulating myeloid cells allows 
for the detection of clonal hematopoiesis of indetermined 
potential (CHIP). This alteration manifests with aging 
and constitutes a risk factor of blood cancers, including 
acute myeloid leukemia [35], as well as other seemingly 
unrelated diseases, such as atherosclerosis [36], liver 
fibrosis [37] and non-small cell lung cancer [38], likely 
due to pro-inflammatory effects. In recent years, it has 
been discovered that genomic instability affects all major 
organs, causing the generation of mosaics of cells (i.e., the 
juxtaposition of genetically non-identically cells within 
the same tissue), some of which tend to clonally expand 
because they acquire a proliferative advantage over nor-
mal, unmuted cells, hence outcompeting them [39, 40]. 
The resulting genetic heterogeneity may contribute to 
the time-dependent functional decline of aging tissues 
(for instance due to a final loss of stem cell features, rep-
licative senescence, the secretion of pro-inflammatory 
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factors) as well as the generation of ever-more mutated, 
pre-malignant and hence potentially oncogenic cells.

Epigenetic alterations
The structure of chromatin and patterns of gene expres-
sion are transmitted through epigenetic changes which 
result from a myriad of posttranslational modifications 
(most prominently methylation and acetylation) affecting 
DNA and histones (along with other mechanisms involv-
ing non-coding RNAs), as well as chromatin structure, 
that can be transmitted from mother cells to their daugh-
ter cells, hence contributing to the “identity” of differenti-
ated cell types [41]. Throughout the aging process, such 
epigenetic changes are progressively lost, increasing the 
noise in the system, and contributing to a progressive loss 
of cellular identities that menaces the functional integrity 

of complex tissues and potentially enhances the risk of 
carcinogenesis coupled to an increase in tumor hetero-
geneity and phenotypic plasticity [42]. The most common 
(but still imperfect) technology to measure epigen-
etic shifts consists in bisulfite pyrosequencing to detect 
DNA methylation patterns that can be bioinformatically 
deconvoluted as “biological clocks” and be associated to 
the risks of developing specific diseases [43].

Chronic inflammation
Aging is associated with a failure to control inflammation 
in space and time (“inflamm-aging”) [44], and inflam-
mation is also one of the hallmarks of cancer, likely act-
ing through a combination of cell-autonomous effects 
(e.g., increased proliferation of cells leading to genomic 
and epigenomic instability) and non-cell-autonomous 

Fig. 2  Common mechanisms driving cancer and aging. Cancer and aging are characterized by common hallmarks: the chronic installation of inflamma-
tion, genomic instability, intestinal dysbiosis and alterations of the epigenome. ATM: ATM serine/threonine kinase; BLM: BLM RecQ like helicase; BRCA1/2: 
Breast cancer type 1/2 susceptibility protein; CRP: circRNA: circular RNA; C-reactive protein; ER: endoplasmic reticulum; ERCC8: Excision Repair Cross-Com-
plementing group 8; FANCA/C/G: FA complementation group A/C/G; GABA: Gamma-aminobutyric acid; IFN-γ: Interferon-gamma; IL: interleukin; LAD: 
lamina-associated domains; lncRNA: long non-coding RNA; LPS: lipopolysaccharide; MDSC: myeloid-derived suppressor cells; miRNA: micro RNA; mRNA: 
messenger RNA; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NLR family pyrin domain containing 3; SCFA: short-chain 
fatty acids; TCR: T cell receptor; TH: helper T cell; TLR: Toll-like receptor; TNF-α: Tumor necrosis factor; TREG: regulatory T cell; WRN: WRN RecQ like helicase; 
5-HT: 5-hydroxytryptamine (Serotonin)
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consequences (e.g., fibrosis, rarefaction of ECM compo-
nents and local immunosuppression by myeloid-derived 
suppressor cells) [3, 45]. For this reason, inflammation 
has a dual role in both aging and cancer, implying that 
suppression of inflammation may have a multipronged 
impact on the development of a large spectrum of age-
associated disorders that includes both malignant and 
non-malignant diseases.

Intestinal dysbiosis
The intestinal lumen is colonized by a diverse microeco-
system composed by archaea, bacteria, fungi, parasites, 
phages and viruses that altogether influences gut health 
as well as bodywide homeostasis [46]. Contrasting with 
the healthy (eubiotic) state, gut dysbiosis is characterized 
by an increase in the abundance of harmful microbial 
species coupled to a relative decrease of useful microbes. 
Importantly, multiple non-malignant age-associated dis-
eases are coupled with similar shifts in the gut micro-
flora as are cancers located outside of the gastrointestinal 
tract [47]. Experiments showing that the microbiota from 
young mice, as well as specific health-associated bacterial 
strains (such as Akkermansia muciniphila), can enhance 
the lifespan of mice with progeria, suggest a causal impli-
cation of dysbiosis in aging [48]. Intriguingly, the trans-
fer of such a health-associated microbiota or that of A. 
muciniphila also stimulate anticancer immunosurveil-
lance [49] (and fecal microbial transfer from healthy 
patients to melanoma-bearing patients sensitizes to sub-
sequent immunotherapy with antibodies targeting the 
PD-1/PD-L1 interaction) [50], suggesting communalities 
between the age-related loss of health and cancer. Thus, 
intestinal dysbiosis is considered another ‘meta-hallmark’ 
of aging and cancer.

In sum, it appears that some of the processes that cause 
aging also underly oncogenesis, as this is well docu-
mented for the accumulation of mutated cells in the aging 
organism, likely preparing the grounds for multi-step 
oncogenesis, as well as for the loss of epigenetically con-
trolled cellular identities that may favor the acquisition of 
cancer stem cell characteristics. Chronic inflammation 
and dysbiosis also share similar etiologies and trajectories 
in the context of aging and cancer with the peculiarity 
that they can be targeted by specific treatments.

Possible causes of reduced cancer incidence in very 
old people
Nonagenarians (90–99 years), centenarians (100–109 
years) and supercentenarians (> 110 years) progressively 
exhibit a relative decrease in the incidence of new can-
cer diagnoses as compared to the younger octogenarians 
(80–99 years) and septuagenarians (70–79 years) [1, 2], 
suggesting that some facets of the aging process may pro-
tect against the development and clinical manifestation of 

neoplasia. Indeed, the probability of a centenarian to die 
from cancer as opposed to other causes is only 4% [51]. 
Specific features of aging (i.e., telomere attrition and stem 
cell exhaustion) can suppress oncogenesis and hence act 
as ‘antagonistic’ hallmarks. Disabled macroautophagy 
and cellular senescence are two additional ‘ambivalent’ 
hallmarks of aging that mediate context-dependent onco-
suppressive effects [33] (Fig. 3).

Telomere attrition
Telomeres at the extreme ends of chromosomes con-
tain repeated sequences that must be maintained by the 
telomerase complex to avoid their progressive shorten-
ing during mitoses. Since telomerase subunits are typi-
cally lost during adulthood and aging in somatic cells, 
this mechanism limits replicative lifespan and poten-
tially contributes to the aging process as a countdown 
mechanism [52]. Telomere attrition theoretically avoids 
carcinogenesis in aged tissues due to the induction of 
replicative senescence, and tumors must indeed re-
activate telomerase expression (e.g., due to mutations in 
the promoter encoding the protein subunit TERT) [53], 
overexpress additional factors (such as the shelterin com-
pound TPP1) that cooperate with telomerase in telomere 
maintenance [54], or activate mechanisms for alternative 
lengthening of telomers to strive [55].

Stem cell exhaustion
Stem cell exhaustion compromises tissue repair in aging 
[56, 57]. Although this has negative effects on the capacity 
of tissues to regenerate upon injury, stem cell exhaustion 
may also prevent oncogenesis by opposing phenotypic 
plasticity and hence reduce the probability of malignant 
transformation in aged tissues [33]. In other words, stem 
cell exhaustion can abort the first steps of oncogenesis, 
which relies on the formation cancer stem cells. Indeed, 
malignant transformation implies a failure of normal 
terminal differentiation by cells that rather undergo de-
differentiation, manifest a differentiation block or exhibit 
transdifferentiation [32]. Some of these pathways related 
to phenotypic plasticity (such as signals transmitted via 
Wnt/β-catenin, NF-κB, Hedgehog) are explored in clini-
cal trials [58] and Smoothened (Smo) antagonists can be 
targeted for the treatment of locally advanced and meta-
static basal cell carcinoma [59], underscoring the practi-
cal relevance of these findings.

Disabled macroautophagy
Aging is associated to a progressive inhibition of macro-
autophagy (and other types of autophagy, including chap-
erone-mediated autophagy and mitophagy), progressively 
compromising cellular fitness due to the accumulation of 
waste material including dysfunctional organelles and 
micronuclei [60, 61]. Disabled macroautophagy may 
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also compromise the fitness of cancer cells, reducing 
their metabolic fitness, proliferative potential, resistance 
to therapeutic agents, as well as their capacity to sub-
vert anticancer immune responses [33]. That, said, mac-
roautophagy may also constitute a tumor-suppressive 
mechanism because it contributes to the maintenance of 
genomic stability, favors oncogene-induced senescence, 
mitigates procarcinogenic inflammation, contributes to 
ferroptotic cell death [62] and favors immunosurveillance 
[33, 63]. Hence, it appears that macroautophagy plays 

a context-dependent role, either favoring or inhibiting 
oncogenesis and tumor progression.

Cellular senescence
Senescent cells exhibiting accumulate in aging tissues, 
and it has been postulated that their close-to-irreversible 
cell cycle arrest would constitute a barrier against malig-
nant transformation [33]. Accordingly, the induction of 
senescence in malignant cells may constitute a therapeu-
tic goal, especially since senescent cancer cells appear 

Fig. 3  Mechanisms of aging that oppose cancer development. Part of the aging phenotype results in the blockade of mechanisms that typically sustain 
tumor development and growth. Telomere attrition, stem cell exhaustion, disabled macroautophagy and cellular senescence are increased in aging and 
have an antagonist role in cancer. ALT: Alternative lengthening of telomeres; ATG: autophagy-related genes; CCL2: chemokine C-C motif ligand 2; EP300: 
histone acetyltransferase p300; HH: hedgehog signaling pathway; hTERT: Telomerase reverse transcriptase; IFN: interferon; IL: interleukin; KLF4: Kruppel-
like factor 4; MHC-I: major histocompatibility complex class I; mTORC1: mammalian target of rapamycin complex 1; Mφ: Macrophage; NK: natural killer cell; 
Notch: neurogenic locus notch homolog proteins signaling pathway; OCT4: octamer-binding transcription factor 4; p16: cyclin-dependent kinase inhibi-
tor 2 A; p21: cyclin-dependent kinase inhibitor 1; RB1: Retinoblastoma protein; SASP: senescence-associated secretory phenotype; SOX2: sex determining 
region Y-box 2; TP53: tumor protein P53; WNT: Wnt signaling pathway
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to be particularly immunogenic, hence eliciting T cell 
responses via the upregulation of the antigen-presenting 
machinery in response to interferon-g [64, 65]. In addi-
tion, senescent tumor cells appear particularly suscep-
tible to natural killer (NK) cell-mediated lysis [66, 67]. 
However, senescence may be reversible in specific cases, 
a phenomenon that might contribute to tumor cell dor-
mancy [68, 69]. Moreover, senescence can result in local 
immunosuppression due to upregulation of the two PD-1 
ligands PD-L1 and/or PD-L2 on malignant cells [70, 
71], as well as in the secretion of pro-inflammatory and 
immunosuppressive factors exemplified by interleukins 
6 and 8 [72]. This latter phenomenon, which is dubbed 
as senescence-associated secretory phenotype (SASP), 
explains the long-range effects of cellular senescence [73]. 
When senescence affects tumor-infiltrating leukocytes, it 
may subvert anticancer immune responses (see below), 
hence contributing to tumor progression. Furthermore, 
senescence affecting stromal cells (such as hepatic stel-
late cells in the context of hepatocellular carcinoma) may 
precipitate oncogenesis [74]. For this reason, senescence 
mediates context-dependent anti- and pro-carcinogenic 
effects.

In sum, several among the hallmarks of aging may 
reduce the generation or fitness of (pre-)malignant cells, 
likely explaining why the oldest elderly exhibit a reduced 
cancer-specific mortality. That said, although such aging-
associated tumor suppressive effects may have a signifi-
cant impact on cancer development in very old persons, 
they fall short from reducing cancer incidence to the lev-
els found before 20 years of age [1, 2].

Cancer as a complication of aging
The aforementioned considerations suggest that can-
cers steadily increase their frequency in the aged organ-
ism until the plateau reached at 85–90 years is attained, 
because aging and oncogenesis are caused by shared 
mechanisms (and simultaneously other aging-driving 
processes fail to avoid carcinogenesis). However, it can 
also be speculated that age-associated changes in tissue 
quality with fibrosis and alterations of the extracellular 
matrix (ECM), systemic and local inflammation, as well 
as failure of immunosurveillance favor carcinogenesis 
and tumor progression [75, 76]. Hence aging itself (rather 
than its underlying causes) would support the clinical 
manifestation and progression of cancers as a secondary 
complication of aging (Fig. 4).

Alterations of the extracellular matrix
Aging is associated to the development of fibrosis 
due to the excessive deposition of ECM components 
such as collagen in the ECM in several internal organs. 
This property may explain why aging is coupled to an 
increased propensity of breast cancers and melanomas 

to generate metastases in the lung. Indeed, in preclini-
cal experiments, fibrosis of the lung causes the reversal 
of dormancy of cancer cells via the fibroblast-mediated 
secretion of platelet-derived growth factor (PDGF)-C 
(in the case of estrogen receptor-positive breast cancer) 
or that of WNT antagonist, sFRP1 (in the case of mela-
noma) [77, 78]. Reportedly, aged dermal fibroblasts also 
secrete high levels of another WNT antagonist, sFRP2, 
which can drive angiogenesis in melanomas, their metas-
tasis, as well as their resistance to targeted therapy with 
the BRAF inhibitor vemurafenib [79]. In addition, age-
associated disruption of the collagen I network in the 
ECM of the dermis may reduce mechanical constraints 
that prevent the development of basal cell carcinoma 
[80].

An age-related decrease in the secreted ECM polysac-
charide hyaluronic acid, especially in its high-molecular 
mass variant, may causally contribute to aging and onco-
genesis, as demonstrated by the fact that transgenic mice 
overexpressing naked mole-rat hyaluronic acid synthase 
2 gene exhibit an increase in cancer-free healthspan and 
longevity [81]. This age-associated decrease in hyaluronic 
acid, as well as that of the proteoglycan link protein hyal-
uronan and proteoglycan link protein 1 (HAPLN1), may 
induce an aging-associated increase in ICAM1 in endo-
thelial cells [82]. ICAM1 overexpression causes phos-
phorylation and internalization of VE-cadherin, resulting 
in blood vessel permeabilization, potentially explain-
ing why old age is associated with poor melanoma out-
come. Indeed, blocking ICAM1 with suitable antibodies 
reduces tumor size and distant metastasis in older mice 
with melanoma [82].

Inflammation
Inflammaging [44] can drive the senescence of cancer-
associated fibroblasts that secrete factors enhancing 
peritoneal dissemination of gastric cancer [83]. Gliosis, 
a state of central nervous system inflammation coupled 
to the expansion of glial cells (such as microglia and 
astrocytes causing microgliosis and astrogliosis, respec-
tively, during early and late responses to injury) promotes 
metastasis of lymphoma to the brain due to the upregu-
lation of the chemokine CCL19, locally retaining tumor 
cells [84]. As compared to plasma from young controls, 
plasma from aged individuals contains higher levels of 
methylmalonic acid, a byproduct of propionate catabo-
lism and a biomarker of vitamin B12 deficiency [85]. B12 
deficiency may favor inflammation indirectly through a 
failure in tissue repair [86]. Of note, methylmalonic acid 
favors epithelial-mesenchymal transition of cancer cells 
through the upregulation of TGFB2 and consequent 
upregulation of the transcription factor SOX4 [85]. In 
addition, methylmalonic acid has pro-inflammatory and 
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pro-aging properties [87]. These examples illustrate how 
age-associated inflammation favors tumor progression.

Failing immunosurveillance
Aging of the immune system (immunosenescence) occurs 
in the elderly, thus compromising anticancer immune 
response that may avoid carcinogenesis, reduce tumor 
progression, and decisively contribute to the success of 
most if not all treatment modalities in the oncological 
armamentarium, including chemotherapy, radiotherapy, 

immunotherapy and targeted therapy [88, 89]. Immu-
nosenescence may directly affect T cells, reducing their 
effector function by down-regulating the costimulatory 
markers CD28 and CD27 and upregulating the terminal 
differentiation marker CD57 [90, 91]. In addition, senes-
cent macrophages accumulate in tissues such as the lung, 
facilitating KRAS-induced non-small cell lung cancers, 
likely due to direct trophic effects on malignant cells, as 
well as due to the suppression of T cell-mediated immu-
nosurveillance. Accordingly, the elimination of senescent 

Fig. 4  Reciprocal induction of aging and cancer
The aged organism is particularly propitious for the development of malignancies due to alterations in the extracellular matrix (ECM) and the installa-
tion of a favorable immune context (inflammation and immunosenescence). Conversely, after their curative treatment cancer survivors face long-term 
toxicities including accelerated aging. Indeed, in the long run, they have higher probabilities of cancer relapse as well as increased risk of developing 
a plethora of age-related pathologies. CD: Cluster of differentiation; CSF: colony-stimulating factors; CXCL1: chemokine (C-X-C motif ) ligand 1; FRP1/2: 
secreted frizzled-related proteins 1/2; HAPLN1: hyaluronan and proteoglycan link protein 1; ICAM1: intercellular adhesion molecule 1; IL: interleukin; irAEs: 
immune-related adverse events; MDSC: myeloid-derived suppressor cells; MMPs: matrix metalloproteinases; NO: nitric oxide; PA: protease associated 
domain proteins; PDGF-C: platelet-derived growth factor C; ROS: reactive oxygen species; TCR: T cell receptor; VEGF: vascular endothelial growth factor
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macrophages reduces tumor progression [92, 93]. Failing 
immunosurveillance may also contribute to aging due 
to the incapacity of the immune system to clear senes-
cent cells that accumulate in various tissues. Logically, 
attempts are underway to stimulate immune responses 
against such senescent cells, for instance by engineering 
chimeric antigen receptor (CAR) T cells that recognize 
antigens associated with cellular senescence [94, 95].

In conclusion, the aging organism appears particularly 
susceptible to the development and progression of malig-
nant tumors through a variety of mechanisms. Aging tis-
sues may constitute a particularly appropriate ‘soil’ for 
tumors to seed and invade.

Aging as a consequence of cancer and its treatment
Invasive cancers break tissue barriers, cause chronic 
inflammation, suppress immune responses, and mobilize 
ever more resources from the body, ultimately eroding 
bodywide health at multiple levels [96]. Moreover, even 
when successful, their treatment with DNA-damaging 
chemotherapeutics and radiotherapy has long-lasting 
effects on the organism that may manifest with a delay of 
several decades in cancer survivors cured during child-
hood, adolescence, or young adulthood. These long-term 
consequences give rise to a premature aging phenotype 
coupled to the early manifestation of a large panel of age-
associated pathologies that include, but are not limited 
to, the manifestation of other (‘subsequent’ or ‘second’) 
cancers, small adult height, prediabetes, cardiovascu-
lar disease, chronic kidney disease, dementia, muscu-
loskeletal decline with osteoporosis and sarcopenia, as 
well as tissue fibrosis. Ultimately, this results in frailty 
and early mortality (Fig.  4). These long-term complica-
tions of early-life cancer treatments have been described 
in some detail thanks to the constitution of specific reg-
istries such as the St. Jude Lifetime Cohort [97, 98], the 
US-centered Childhood Cancer Survivor study [98, 99], 
and the EUROCARE-6 study [100]. Although not as 
obvious as observed in childhood cancer, the additive 
burden of previous cancer in terms of chronic patholo-
gies and premature mortality can be calculated in the 
adult population. Using data from the UK biobank, the 
health data from over 240,000 cancer survivors was com-
pared to that of 500,000 adults with no history of cancer 
after matching by age, sex, and Index of Multiple Depri-
vation. Late morbidities attributable to cancer included 
hematological, pulmonary, Immune and renal dysfunc-
tions, and depended on the type, doses and combination 
of used therapies [101]. Logically, attempts are underway 
to palliate these undesired side effects by more appro-
priate treatments reducing long-term toxicity, screen-
ing programs that identify patients at risk of developing 
specific diseases, as well as by post-therapeutic lifestyle 
interventions.

Avoidance of long-term toxicities of anticancer treatments
There is clear evidence that the severity of the age- and 
disease-accelerating effects of early-life cancer therapies 
have diminished over time likely due to several factors 
including, but not limited to, the reduction of cumu-
lative chemotherapy doses, the replacement of some 
DNA-damaging agents by other cytotoxicants, and the 
avoidance of certain interventions, such as cranial irra-
diation of children with leukemia or glioma; or mediasti-
nal irradiation of patients with Hodgkin lymphoma [102, 
103]. Retrospective analyses identifying risk-enhancing 
practices and biomarkers may help to reduce treatment-
induced long-term toxicities in prospective studies. Thus, 
telomere length in circulating lymphocytes is reduced in 
CCSs, correlating with the manifestation of a variety of 
non-neoplastic chronic health conditions [104]. Similarly, 
the measurement of various signs of biological aging (two 
physiology-based algorithms; four distinct DNA meth-
ylation clocks, and a single-time-point DNA methylation 
blood test) revealed that CCSs from the St. Jude Lift-
etime cohort aged more quickly (by ~ 5% in average) than 
community controls, in particular when they received 
hematopoietic cell transplants and vinca alkaloid che-
motherapy [105]. Although these quantitative tests are 
predictive of mortality [105], it remains to be determined 
whether such biomarkers may guide the development of 
less toxic cancer cures.

An additional strategy consists in the use of co-medi-
cations that can reduce anticancer drug toxicities. For 
example, co-treatment with the iron chelator dexrazox-
ane has been successfully used to mitigate the long-term 
side effects of anthracyclines at the level of serious car-
diovascular outcomes (cardiomyopathy, ischemic heart 
disease, and stroke) in CCSs [94, 95]. Moreover, in a 
randomized Phase II trial, low-dose tamoxifen has been 
shown to reduce radiological and biological risk fac-
tors of breast cancer in patients having received chest 
radiation ≥ 12  Gy by the age of 40 [106]. Anthracycline-
induced premature aging can be prevented in mice by a 
chemical-genetic system that allows for the elimination 
of senescent cells [107]. Hence, senolytics, which are 
drugs that kill senescent cells, can be used to combat the 
long-term cardiotoxicity of doxorubicin in a preclinical 
model [108]. Future will tell whether such an approach 
can also be used to mitigate therapy-induced senescence 
in cancer patients as well.

Biomarker-guided screening programs
The risk of subsequent (secondary) cancers can be cal-
culated based on polygenic risk scores derived from 
general population and genome-wide association stud-
ies [109]. Moreover, this risk is influenced by the type 
of treatment (radiotherapy and specific chemotherapeu-
tic agents) and their cumulative doses [110]. More than 
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cumulative interactions between genetic risk and radio-
therapy have been described for specific cancers such 
as basal cell carcinoma and breast or thyroid cancers 
[109]. The use of doxorubicin beyond a threshold (≥ 200 
mg.m-2) is linked to an enhanced risk of subsequent 
female breast cancer [110], exemplifying how distinct 
therapeutic interventions are linked to particular cancer 
risks that may instigate a reinforcement of early detec-
tion campaigns. Among CCSs, hearing loss is associ-
ated with the use of cisplatin, carboplatin and cranial or 
facial radiation > 32  Gy [111]. The risk of cardiac failure 
is determined by cumulative anthracycline doses and the 
location of radiotherapyn e.g., targeting the mediastinum 
causing irradiation of the heart [112, 113], while the risk 
of severe obesity in CCSs is influenced by genetic risk 
scores [114]. Thus, particular features of early-life can-
cer therapy may be combined with polygenic risk scores 
to guide specific screening programs for the detection 
and interception of specific manifestations of premature 
aging in CCSs.

Lifestyle interventions
Retrospective studies indicate that premature aging of 
CCSs is reduced by enhanced uptake of dark green veg-
etables and nuts/seeds, but enhanced by that of refined 
grain [115]. In contrast it appears that physical activity 
has no significant impact on the probability of CCSs to 
develop subsequent cancers [116, 117]. However, physi-
cal activity in adult CCSs has been shown to correlate 
with reduced neurocognitive problems at the levels of 
emotion regulation, memory, organization and task effi-
ciency [118], as well as with reduced mortality [116]. In 
addition, psychosocial stress, sleep perturbations, smok-
ing, alcohol consumption and substance use may contrib-
ute to accelerated ageing in CCSs [119] in the same way 
as they deteriorate health in cancer-free individuals [28]. 
These findings suggest that lifestyle factors that favor 
health in the general population may also be useful for 
maintaining the fitness of CCSs.

In sum, survivors of early-life cancer exhibit acceler-
ated aging with the precocious manifestation of age-asso-
ciated diseases, as well as an elevated risk of frailty and 
premature death. Attempts are underway to reduce these 
risks. Thus, secondary prevention in childhood cancer 
survivors is constantly ameliorated following specific 
guidelines, such as the Children’s Oncology Group Long-
Term Follow-Up Guidelines for Survivors of Childhood, 
Adolescent, and Young Adult Cancers in North Amer-
ica [120], the Pan-European Network for Care of Survi-
vors after Childhood and Adolescent Cancer Guidelines 
Group [121], as well as the International Guideline Har-
monization Group for Late Effects of Childhood Cancer 
[122]. Beyond these risk reduction programs, efforts are 
ongoing to implement lifestyle interventions that reduce 

accelerated aging in cancer survivors. It will be interest-
ing to learn whether drugs that are currently evaluated 
for their potential antiaging effects in clinical trials [4] 
can be advantageously used in cancer survivors as well.

Impact of aging on the therapeutic management of 
cancer
The classification of cancer is still mostly based on loca-
tion (organs) rather than on molecular subtypes. When 
classified by location or histology, the prognosis of each 
cancer type changes with age [123]. For example, breast 
cancers tend to be particularly aggressive if they manifest 
before 40 years of age [124], while Hodgkin lymphoma 
diagnosed after 45 has a dismal prognosis compared to 
cases diagnosed in adolescence or early adulthood [125]. 
Similarly, the efficacy of treatments regimens changes 
with age. For instance, oxaliplatin fails to confer any ben-
efit for the adjuvant treatment of poor-prognosis colorec-
tal cancer after the age of 70 [125], but immunotherapy 
against melanoma or lung cancer is equally efficient 
at a young and an old age [126, 127]. Considering that 
adjuvant or neoadjuvant chemotherapy of breast can-
cer patients leads to a 10% reduction of exercise capac-
ity, measured by oxygen uptake during peak exercise 
(VO2peak), and that normal aging is accompanied by a 
10% reduction of VO2peak per decade, the age acceleration 
induced by therapeutic interventions on adult patients is 
certainly problematic [128]. For this reason, generic rec-
ommendations such as the avoidance of chemotherapy 
and a preference for radiotherapy for the management 
of older cancer patients have been proposed [129]. How-
ever, this idea collides with the fact that the suppression 
of chemotherapy in older breast cancer patients is associ-
ated with an elevated risk of relapse [130].

The majority of cancers manifest in older adults (> 65 
years), often in the context of advanced biological age 
(with respect to chronological age) and one or several 
comorbidities. This contrasts with the fact that most 
clinical trials are performed in younger, relatively fit indi-
viduals, because they usually exclude persons > 70 years 
with major comorbidities and reduced performance sta-
tus [131, 132], meaning that FDA/EMA-approved treat-
ments are often not adapted to the average ‘real world’ 
cancer patient. Indeed, older adults diagnosed with can-
cer may exhibit more side effects and reduced drug tol-
erability than patients enrolled in clinical trials. For this 
reason, it is necessary to carefully weight therapeutic 
decisions to avoid the over-treatment or under-treatment 
of older patients. Over-treatment consists in surgical 
procedures or the administration of excessive doses (of 
drugs or irradiation) or cycles of treatments, resulting 
in a reduction of the quality of life without therapeutic 
benefit, as this often occurs near the end of life in older 
patients [133]. Under-treatment consists in the exclusion 
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of older patients from viable therapeutic options based 
on the mere consideration of their chronological age, 
without taking into account their biological fitness [134, 
135].

To adapt cancer therapies to each cancer patient in a 
personalized fashion, recommendations have been for-
mulated by American Society for Clinical Oncology 
[136], Federal Drug Administration [137], the Cancer 
and Aging Research Group [138], and the International 
Society of Geriatric Oncology Priorities Initiative [139]. 
This involves comprehensive geriatric assessment (GA) 
of patients before therapeutic decisions are made, ideally 
in the context of a medical team involving both geriatri-
cians and oncologists. GA should include the combined 
evaluation of physical performance, functional sta-
tus, comorbidities, polypharmacy, cognition, nutrition, 
social support, and psychological status [136]. GA then 

allows to classify patients into fit, vulnerable, and frail. Fit 
patients can be oriented towards standard of care, vulner-
able individuals towards interventions that reduce geriat-
ric conditions as they undergo adapted treatments (e.g., 
with reduced doses and number of cycles or giving pref-
erence to radiotherapy over chemotherapy), and frail per-
sons towards palliative care [140] (Fig.  5). Randomized 
clinical studies demonstrated that GA can reduce serious 
toxic effects from cancer treatment [141]. Beyond GA, it 
is possible to measure biological parameters indicating 
health deterioration among older cancer patients such as 
the levels of circulating C-reactive protein, a parameter of 
systemic inflammation, to predict other parameters such 
as cognitive decline [142]. Indeed, it has been proposed 
to measure multiple parameters indicative of inflamma-
tion, cell senescence, telomere shortening, and epigenetic 
changes that may inform on the biological resilience of 

Fig. 5  Practical management of geriatric patients after cancer diagnosis
Flow chart for the adaptation of the general cancer clinical management guidelines to the specific needs of the geriatric population
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older cancer patients and then influence treatment deci-
sions [143].

In synthesis, clinical oncology is confronted with the 
challenge of adapting treatments to a heterogeneous pop-
ulation of mostly elderly patients that differ in their bio-
logical and medical conditions. In this context, a major 
challenge is to transcend the idea that the extension 
of overall survival (quantity of life) constitutes the sole 
desirable endpoint and hence to consider the importance 
of quality-of-life as well [135].

Conclusions
In this review, we have outlined some of the overarching 
principles governing the relationship between aging and 
cancer. Aging is strongly linked to cancer at three levels, 
namely, (i) because aging and oncogenesis share com-
mon mechanisms, (ii) because aging tissues favor tumor 
progression, and (iii) because tumor therapies undermine 
health and cause premature aging. Exceptions to these 
rules are constituted by (i) pediatric cancers that prefer-
entially manifest during infancy rather than adulthood, 
(ii) the existence of progeroid syndromes without malig-
nancies, and (iii) the fact that the oldest elderly exhibit a 
reduced incidence of new diagnoses of, and death from, 
cancer.

Worldwide estimations indicate that 1.6  billion indi-
viduals will be over 65 in 2050, implying a major surge 
in the number of age-related diseases including cancer. In 
this context, it will be important to decipher the precise 
mechanisms that link old age to the manifestation and 
progression of neoplasia and to develop broadly imple-
mentable strategies for the prevention, early detection 
and interception of malignant disease, hence avoiding 
the diagnosis of cancer at an advanced stage, when treat-
ments become poorly tolerable, expensive, and mostly 
futile. Hence, investments in public and private research 
dealing with aging and cancer should be a priority for the 
future. Such investments will not only provide a molec-
ular comprehension of the crosstalk between aging and 
malignancy, but will also lead to the identification of 
actionable targets for prophylactic or early-interceptive 
interventions on both processes.

It is reasonable to postulate that lifestyle interventions 
coupled to public policies designed to reduce exposure 
to industrial, nutritional, and environmental pollutants 
and to improve the economic and psychosocial status of 
the aging population, will allow to extend healthspan and 
to delay or avoid the manifestation of neoplastic disease. 
In this context, different countries have organized their 
pension and health systems, anti-pollutant strategies, as 
well as their focus on preventive versus curative medical 
interventions, in rather distinct ways. It will be a chal-
lenge for future investigation to perform carefully con-
trolled inter-country comparisons so that the outcome of 

such policies can be accurately interpreted and improved. 
By applying policies that are successful in one country 
to others and by performing sophisticated performance 
measurements, it should be possible to perform large-
scale multidisciplinary studies that will optimize a sus-
tainable society that efficiently supports the prevention 
and interception of old age-associated cancer.
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