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Abstract 

Background Cancer patients are more susceptible to an aggressive course of COVID-19. Developing biomarkers 
identifying cancer patients at high risk of COVID-19-related death could help determine who needs early clinical inter-
vention. The miRNAs hosted in the genomic regions associated with the risk of aggressive COVID-19 could represent 
potential biomarkers for clinical outcomes.

Patients and methods Plasma samples were collected at The University of Texas MD Anderson Cancer Center 
from cancer patients (N = 128) affected by COVID-19. Serum samples were collected from vaccinated healthy individu-
als (n = 23) at the Municipal Clinical Emergency Teaching Hospital in Timisoara, Romania. An in silico positional cloning 
approach was used to identify the presence of miRNAs at COVID-19 risk-associated genomic regions: CORSAIRs 
(COvid-19 RiSk AssocIated genomic Regions). The miRNA levels were measured by RT-qPCR.

Results We found that miRNAs were enriched in CORSAIR. Low plasma levels of hsa-miR-150-5p and hsa-miR-93-5p 
were associated with higher COVID-19-related death. The levels of hsa-miR-92b-3p were associated with SARS-CoV-2 
test positivity. Peripheral blood mononuclear cells (PBMC) increased secretion of hsa-miR-150-5p, hsa-miR-93-5p, 
and hsa-miR-92b-3p after in vitro TLR7/8- and T cell receptor (TCR)-mediated activation. Increased levels of these three 
miRNAs were measured in the serum samples of healthy individuals between one and nine months after the second 
dose of the Pfizer-BioNTech COVID-19 vaccine. SARS-CoV-2 infection of human airway epithelial cells influenced 
the miRNA levels inside their secreted extracellular vesicles.

Conclusions MiRNAs are enriched at CORSAIR. Plasma miRNA levels can represent a potential blood biomarker 
for predicting COVID-19-related death in cancer patients.
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Introduction
Critical illness of coronavirus disease 2019 (COVID-
19) is associated with host-mediated lung inflammation 
[1], and severe cases progress to acute respiratory dis-
tress syndrome (ARDS) [2, 3]. ARDS is characterized 
by difficulty breathing and low blood oxygen that may 
cause respiratory failure and is responsible for 70% of 
fatal COVID-19 cases [4]. Besides the direct cytopathic 
effect of viral infection, the severity of the disease can 
be due to the host’s response. Indeed, a dysfunctional 
immune response to the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection can lead 
to a massive release of cytokines (cytokine storm) and 
sepsis-like symptoms that cause inflammation-induced 
injuries to tissue and blood vessels of the lung [1] and 
also multi-organ failure [4, 5]. Patients with cancer 
generally have a greater risk of unfavorable outcomes 
from COVID-19, with higher age, male sex, and can-
cer type (blood cancer) as the main risk factors [6]. 
Furthermore, host genetic factors can be associated 
with the susceptibility to developing severe COVID-19 
and, therefore, may help identify molecular targets and 
develop biomarkers to predict clinical outcomes. Over 
the past three years, genome-wide association studies 
(GWAS) have identified several genetic variants, such 
as single nucleotide polymorphisms (SNPs), associated 
with the severity and susceptibility of COVID-19 [7–9]. 
Protein-coding genes near these SNPs play essential 
regulatory functions in immune responses and viral 
infection [8, 10, 11]. Our study applied a similar but 
alternative target identification strategy by focusing on 
a specific class of small non-coding RNAs, the micro-
RNAs (miRNAs), instead of protein-coding genes. In 
particular, we used a similar approach that allowed us 
to successfully achieve the initial identification of miR-
NAs as essential genes for cancer [12]. Our previous 
study showed that miRNA genes are frequently located 
at fragile sites, minimal regions of loss of heterozygo-
sity, minimal regions of amplification (minimal ampli-
cons), or common breakpoint regions. In the current 
study, we assessed the presence of miRNAs in the prox-
imity of the loci harboring the SNPs associated with 
COVID-19 severity and susceptibility.

MiRNAs are essential regulators in biological processes 
of immunity, inflammation, cytokine storm, infection, 
and sepsis [13–15]. Activated immune cells, such as T 
lymphocytes [16–18], macrophages [19], and dendritic 
cells [20], can secrete extracellular vesicles (EVs) loaded 
with miRNAs into the extracellular space. These miRNAs 

can reach the blood circulation and be detected by cur-
rently used molecular biology techniques [21, 22] as 
circulating miRNAs with the potential to serve as valu-
able biomarkers to predict clinical outcomes of cancer 
patients [22]. In this study, we hypothesized that 1) miR-
NAs are located in the proximity of SNPs associated with 
COVID-19 severity and susceptibility, and 2) these spe-
cific miRNAs could be detected in the blood of cancer 
patients affected by COVID-19 and used to predict their 
prognosis.

Methods
Cohorts and patients
The cancer patients were enrolled at The University 
of Texas MD Anderson Cancer Center  (UT-MDACC) 
under the APOLLO (Adaptive Patient-Oriented Lon-
gitudinal Learning and Optimization) program (proto-
col 2014–0938) starting from April 15, 2020, to provide 
COVID-19 whole blood samples that were processed and 
store at the Institutional Tissue Bank (ITB), a Divisional 
section of  UT-MDACC. We used plasma samples from 
218 patients for a total of 410 plasma samples, where 218 
samples were collected at the time of enrollment (t = 0), 
corresponding to the time of the first positive COVID-19 
test, and the remaining 192 samples at different follow-up 
time points. The demographic characteristics are shown 
in Table  1. We used ITB plasma samples starting from 
patients enrolled in May 2020. Individual patients pro-
vided one or multiple plasma samples during the follow-
up time while affected by COVID-19 and at the time of 
recovery. Based on the year of sample collection, patients 
were divided into two cohorts (2020 and 2021). Clinical 
outcomes were collected for those patients involved in 
our study, with the follow-up time censored at the time of 
death or at the end of our study on April 2022 (follow-up 
time interval: 5 to 23 months).

Twenty-three vaccinated individuals were selected 
from a group of 92 Romanian healthcare workers 
in whom the SARS-CoV-2 antibody response to the 
BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech, 
Mainz, Germany) was previously assessed [23]. The 23 
individuals were healthcare workers from the Munici-
pal and County Clinical Emergency Teaching Hospitals 
in Timisoara, Romania. All participants were healthy 
individuals with no associated comorbidities and were 
not infected with SARS-CoV-2 during the study period, 
February 26 to November 26, 2021. Each participant was 
vaccinated with two doses of the Pfizer-BioNTech vac-
cine at the time of enrollment in the study [24].
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Blood sample collection
The blood was drawn according to protocol 2014–0938 
from cancer patients at UT-MDACC. Whole blood sam-
ples were collected in green top tubes (heparin) and 
processed by the Diagnostic Blood Processing CORE 
Laboratory (UT-MDACC) following the Standard Oper-
ating Procedure (SOP) of the institution and stored at the 
ITB. Briefly, whole blood was centrifugated at 2000 rpm 

(863xg) for 15 min at room temperature, and the collected 
plasma was stored in aliquots of 500 µl/vial at -80 °C.

The blood of the vaccinated healthy individuals was 
drawn monthly at the Municipal Clinical Emergency Hos-
pital in Timisoara, Romania, starting one month after each 
participant received the second dose of the Pfizer-BioN-
Tech vaccine. The whole blood was collected in red top 
tubes and centrifugated at 2000 rpm (863xg) for 10 min at 
room temperature. The collected serum samples were kept 
in 500 µl/vial aliquots at –20 °C until tested at the Clinical 
Laboratory of the Municipal Clinical Emergency Teaching 
Hospital in Timisoara, a reference laboratory for COVID-
19 testing in Romania.

Serologic tests
We investigated serum samples collected at one month, 
three months, six months, and nine months after each 
participant received the second dose of the Pfizer-BioN-
Tech vaccine. To evaluate the vaccine-elicited antibody 
response, the SARS-CoV-2 IgG II Quant assay (Abbott, 
Diagnostics Division, Sligo, Ireland), a chemiluminescent 
microparticle immunoassay (CMIA) with a sensitivity of 
98.1% and specificity of 99.6% [25], was used to detect 
the SARS-CoV-2 anti-spike (S) protein IgG levels in the 
serum samples. The IgG levels were measured using the 
Abbott Alinity i (Abbott Laboratories, Lake Bluff, IL, 
USA), and those with a cutoff ≥ 50.0 AU/mL were con-
sidered positive for IgG [25]. Serologic test kits, including 
controls, were used according to the protocol specified by 
the manufacturer, and the results were interpreted based 
on the manufacturer’s criteria.

Selection of miRNA locations at COVID‑19 risk‑associated 
genomic regions (CORSAIR)
PubMed search using “SNPs and COVID-19” as key-
words and Google search using “COVID-19 genomics”, 
“non-coding genome, outcome, SARS-CoV-2 infections, 
SNPs” allowed the collection of publications on SNPs 
related to COVID-19 risk and differential outcomes. The 
locations of the SNPs (NCBI human genome resources 
https:// www. ncbi. nlm. nih. gov/) were compared with 
the locations of miRNAs (miRbase https:// mirba se. org/) 
using the hg38 reference genome. SNPs were assigned to 
a miRNA if they were located within 1 Mb up- or down-
stream of the start position of the miRNA sequence. R 
was used to extract and compile all experimentally vali-
dated target genes of the selected miRNAs from the fol-
lowing databases: miRecords, miRWalk 2.0, miRTarBase, 
and DIANA-TarBase v8.

Table 1 Demographics and clinical characteristics of COVID-19 
patients

a Targeted COVID-19 treatment: Remdesivir + antibiotic + corticosteroid ± COVID-
19 convalescent plasma

CC Cancer, CVD Cardio-vascular disease, HTN Hypertension; CT pneumonia 
pneumonia diagnosed by computer tomography ARDS Acute respiratory 
distress syndrome

Demographics Characteristics N = 218

Age 13—45 49

46—59 102

 > 60 67

Sex Male 119

Female 99

Race White 146

Black or African American 35

Hispanic 27

Asian 9

Native Hawaiian 0

American Indian or Alaska Native 1

Comorbidities CC + Diabetes 53

CC + CVD / HTN 99

CC + Chronic Respiratory Disease 20

Only CC 98

Severity No symptoms 87

Upper respiratory symptoms 132

CT pneumonia 102

ARDS 38

Targeteda

COVID‑19 treatment
YES 82

NO 136

O2 supplementation None 150

Non-invasive / Nasal cannula / Mask 54

Invasive / Mechanical ventilation 14

Dead /Alive Dead 47

Alive 171

Dead COVID-19-related 20

Non-COVID-19-related 27

Types of cancer Solid singles 116

Solid multiple 13

Liquid singles 75

Mixed (solid and liquid) 14

https://www.ncbi.nlm.nih.gov/
https://mirbase.org/
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Statistical analyses
Unless otherwise specified, all statistical comparisons 
between two groups were calculated based on the Mann—
Whitney U test.

We also developed a prognostic model to predict time 
to death related to SARS-CoV-2 infection and COVID-
19 on 106 patient samples. In addition, the Concordance 
c-index and AUC at each time point were evaluated on 
an independent set of 45 patients. This study has deaths 
due to other causes that precluded COVID-19-related 
death. Therefore, alternative causes of death were con-
sidered as competing risk events. We performed three 
separate analyses for predicting the survival: 1) Cause-
Specific Hazard (CSH) model for COVID-19-related 
death (where other causes of death were considered as 
censoring events), 2) CSH model for non-COVID-19 
death (where COVID-19-related deaths were regarded 
as a censoring event), and 3) sub-distributional hazard 
model of cumulative incidence function for COVID-
19-related death using Fine and Gray Method [26, 27]. 
Gray’s test compared two curves in a cumulative inci-
dence plot to assess the statistical significance [28]. We 
next developed a prognostic model to predict the time 
to death due to COVID-19 on the training set. The Con-
cordance c-index and AUC at each time point were eval-
uated in training and testing groups. All analyses were 
performed using R version 4.2.0 and CRAN packages 
“cmprisk” and “survival”.

Results
MiRNA are enriched at COVID‑19 risk‑associated genomic 
regions (CORSAIR)
We created a GWAS database containing information 
on the SNPs associated with COVID-19 risk of disease 
and aggressivity from over 100,000 individuals collected 
from papers published between October 2020 and Janu-
ary 2022 (Additional Table S1). These papers reported 67 
different SNPs located on 20 genomic regions in 19 auto-
somal chromosomes (except chromosomes 7, 13, and 
18) and the sex X chromosome that were associated with 
different clinical characteristics of COVID-19, such as 
susceptibility to SARS-CoV-2 infection, COVID-19 dis-
ease severity, severe COVID-19 with respiratory failure 
or protection against severe disease. We evaluated the 
presence of miRNAs in the proximity of these genomic 
regions harboring the SNPs associated with COVID-
19 risk of illness and aggressivity. Mainly, we investi-
gated genomic regions spanning up to 1 megabase (Mb) 
up- and down-stream of the COVID-19 risk-associated 
SNPs (total up to 2Mbs), and we named these regions 
COvid-19 RiSk AssocIated Regions (CORSAIR). The 
1 Mb threshold is similar to the one we used to identify 
the cancer-related miRNA locations in cancer-associated 

genomic regions (CAGRs) [12], as this is the distance in 
which several regulatory elements (such as enhancers) 
are functionally active [29]. We found that CORSAIR 
were enriched with miRNAs with 157 miRNA loci iden-
tified (Additional Table S2 and S3). Interestingly, a high 
density of miRNA loci (41 out of the 157 miRNAs, ~ 26%) 
was located in the CORSAIR of chromosome 19 (Chr19), 
one of the smallest chromosomes [30]. Furthermore, 
none of the 157 miRNAs were located in the chromo-
some 19 miRNA cluster (C19MC) at the chromosomal 
band 19q13.42, the largest cluster of human miRNAs 
expressed in cells during early embryonic development 
but not in adult tissues except the placenta [31]. This 
evidence might suggest that the density and specific 
genomic locations of miRNAs in CORSAIR may be rel-
evant to COVID-19 risk. Therefore, we investigated 
whether or not this miRNA enrichment in CORSAIR was 
a random finding. We used the Random Effect Poisson 
Regression Model to evaluate the association between 
miRNA locations and CORSAIR and disease aggressiv-
ity across different chromosomes. Under this model, the 
genomic regions were defined as separate windows of the 
segmented genome with 2  Mb in size. The events were 
defined as the number of miRNAs located at each region. 
The fixed effect in the model was the incidence of SNPs 
in each region. Because different chromosomes have dif-
ferent genetic characteristics that are generally correlated 
within each chromosome, we considered chromosomes 
as a random effect. To further investigate the impact of 
region size on the results, we performed sensitivity analy-
sis by evaluating the results with window sizes ranging 
from 40 kb to 4 Mb. We reported the incidence rate ratio 
(IRR), the 95% confidence interval (CI) of the IRR, and 
the corresponding P values to test the hypothesis that the 
IRR is 1.0 (Fig. 1A). By increasing the size of the region 
window, we observed shorter confidence intervals with 
significant P values for the IRR of SNP in each model. In 
contrast, the lengths of the confidences stay stable after-
ward. To confirm that other genomic features do not 
confound the findings, we further investigated the effect 
of SNPs on predicting the number of non-coding ultra-
conserved elements (ncUCEs) [32]. Our analysis yielded 
a non-significant association between SNPs and ncUCEs 
(P = 0.096), with an IRR of 0.91, suggesting that ncUCEs 
distribution is independent of SNP position (Additional 
Figure S1A). In contrast, miRNAs and SNPs were sig-
nificantly associated with an IRR of 2.51 (P = 2.5E-9) 
(Additional Figure S1B). These data suggest that miR-
NAs located in proximity to SNPs and associated with 
COVID-19 risk of disease and aggressivity, which we 
defined as CORSAIR miRNAs (Fig.  1B), may have a 
potential correlation with COVID-19.
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Fig. 1 Association of genomic location between SNPs and miRNAs. A SNPs are associated with miRNA genomic location using genome windows 
of different sizes. The genome windows grow wider from left to right, and the confidence intervals narrow. The association is consistently 
significant, and the length of confidence interval stables after the genome window reaches ~ 1 Mb. B An example of CORSAIR on chromosome 19, 
where an enrichment of miRNAs (in red) is present in the genomic location around SNPs (in blue)
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Selection of CORSAIR miRNAs to be tested in the plasma 
of cancer patients affected by COVID‑19
We investigated the potential association of the 157 
CORSAIR miRNAs with COVID-19 risk of disease and 
aggressivity. Because SARS-CoV-2 infection is char-
acterized by a dysfunctional immune response caus-
ing cytokine storm, we first evaluated if the CORSAIR 
miRNAs are expressed in five immune cell types: mono-
cytes/macrophages (CD14), granulocytes (CD15), B lym-
phocytes (CD19), T lymphocytes (CD3), and NK cells 
(CD56) [33]. Among the CORSAIR miRNAs expressed 
in immune cells, hsa-miR-150-5p had the highest expres-
sion in B and T lymphocytes and NK cells (Additional 
Table S4a). Then, we found that hsa-miR-150-5p had the 
highest expression levels in the normal lung tissue (Addi-
tional Table  S5). The hsa-miR-150-5p gene is located in 
proximity with rs4801778, whose lead variant is signifi-
cantly associated with reported SARS-CoV-2 infection 
and in linkage-disequilibrium with the missense variant 
rs11541192 [34]. Furthermore, hsa-miR-150-5p was the 
first miRNA to be identified as differentially expressed in 
patients with sepsis and correlate with the IL-18 expres-
sion[35], a cytokine associated with COVID-19 aggres-
sivity [36, 37]. Because of the large number of CORSAIR 
miRNAs, we decided to reduce the number of selected 
miRNAs to be tested in the plasma of cancer patients 
based on their reported expression in 1) miRBase (Addi-
tional Table S3), 2) immune cells (Additional Table S4a) 
and 3) normal lung tissue (Additional Table S5). Because 
COVID-19-related deaths can be associated with sepsis-
like symptoms due to cytokine storm in response to the 
infection [1, 4, 5, 38, 39], and hsa-miR-150-5p is both a 
CORSAIR and sepsis-related miRNA, we decided to 
include in our study five sepsis-related non-CORSAIR 
miRNAs according to our previous and current investi-
gations [35, 40, 41]: hsa-miR-23a-3p; hsa-miR-26b-5p; 
hsa-miR-182-5p; hsa-miR-486-5p; and hsa-miR-93-5p. 
The final list of twenty-three miRNAs included eight-
een CORSAIR and five sepsis-related miRNAs that were 
measured in the plasma of cancer patients (Additional 
Table S6a).

Levels of miRNAs in the plasma of cancer patients affected 
by COVID‑19 are associated with survival
Because they are easily measurable in the blood, circulat-
ing miRNAs may represent helpful biomarkers to assess 
the clinical outcome of COVID-19 patients at high risk 
for poor clinical outcomes, such as cancer patients. This 
is of great importance for high-risk COVID-19 can-
cer patients, such as patients who are not vaccinated 
or cannot be vaccinated for COVID-19, because they 
have a two-fold increased risk of unfavorable outcomes 
(mortality, intensive care unit admission and severity of 

COVID-19) compared with COVID-19 patients without 
cancer [42].

We evaluated whether the selected miRNAs could be 
detected in the plasma of cancer patients affected by 
COVID-19. Only fourteen of the selected twenty-three 
miRNAs were detected in the plasma samples (Addi-
tional Table S6a). Then, we assessed if the levels of detect-
able miRNAs were associated with patients’ clinical 
outcomes. The patients were divided into three groups: 
alive (recovered from COVID-19 within three months 
and alive for at least six months); dead from COVID-
19 or COVID-19-related causes (within three months); 
dead from non-COVID-19-related causes (within three 
months). The time was counted from the first positive 
COVID-19 test. We found that patients who died from 
COVID-19-related causes had significantly lower median 
hsa-miR-150-5p plasma levels compared with alive 
patients (P < 0.0001) and compared with patients who 
died from non-COVID-19-related causes (P = 0.0072). 
(Fig. 2A left). Then, we tested the sepsis-related miRNAs. 
Patients who died from COVID-19-related causes had 
significantly lower median hsa-miR-93-5p plasma levels 
compared with alive patients (P = 0.0017) and compared 
with patients who died from non-COVID-19-related 
causes (P = 0.0117) (Fig.  2A center). We repeated these 
measurements in two independent tests and assessed the 
reproducibility of the measurements (Ct values) of both 
hsa-miR-150-5p and hsa-miR-93-5p (Additional Figure 
S2). We also evaluated if plasma miRNA levels were asso-
ciated with the positivity status of SARS-CoV-2 infection. 
In a pair-matched set of patients (N = 10), we compared 
the levels of miRNAs in samples collected after the last 
SARS-CoV-2 positive test (range 2–12 days) with those of 
the first sample collected after the negative SARS-CoV-2 
test (range 0–23  days). Among the twenty-three tested 
miRNAs, we found that the levels of hsa-miR-92b-3p sig-
nificantly decreased in patients who became negative for 
SARS-CoV-2 infection (P = 0.0059) (Fig.  2B). We found 
no significant results for the other miRNAs (not shown).

These results indicate that low levels of hsa-miR-
150-5p and hsa-miR-93-5p measured in the plasma of 
cancer patients at the beginning or early stage of COVID-
19 (t = 0) were associated with adverse outcomes during 
COVID-19 disease compared with patients with higher 
levels of hsa-miR-150-5p and hsa-miR-93-5p. Finally, the 
decrease of hsa-miR-92b-3p plasma levels could be asso-
ciated with the recovery from SARS-CoV-2 infection.

CORSAIR miRNAs are expressed in immune cells 
and detected in their cell culture supernatants
Both hsa-miR-150-5p and hsa-miR-93-5p are highly 
expressed in immune cells. In particular, hsa-miR-150-5p 
has the highest expression in NK, B, and T cells, whereas 
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hsa-miR-93-5p has the highest expression in mono-
cytes and neutrophils (Additional Table  S4a). Because 
miRNA expression in immune cells can be modulated 
after their activation [43, 44], miRNAs can be secreted 
into extracellular space [17, 45] and reach blood circu-
lation, we hypothesized that miRNAs we measured in 
patients’ plasma could be secreted by activated immune 
cells during SARS-CoV-2 infection and the different lev-
els of secreted miRNAs could reflect modulation in the 
immune cell activation levels. We used two potent acti-
vators to stimulate peripheral blood mononuclear cells 
(PBMC) from four normal donors. Resiquimod (R848) 
selectively binds to TLR7/8 receptors, activated by viral 
ssRNAs in antiviral immune responses, and activates 
monocytes/macrophages and dendritic cells. Concanava-
lin A (conc A), a lectin with potent antigen-independent 

mitogenic activity, activates T lymphocytes. We meas-
ured a differential expression of all the selected fourteen 
miRNAs in the PBMC six days after activation (Fig.  3A 
and Additional Figure S3A). We found a modulation of 
the selected fourteen miRNAs in PBMC at day six and in 
the supernatants at day three and day six after stimula-
tion (Fig. 3A-B, Additional Figure S3A-B, and Additional 
Stable  S6b). Interestingly, hsa-miR-93-5p levels had the 
highest fold-change increase (around ninefold) in the 
supernatants six days after conc A activation, whereas 
hsa-miR-150-5p levels had the third highest fold-change 
increase (around threefold) in the supernatants six days 
after R848 activation. The hsa-miR-92b-3p levels had the 
second highest fold-change increase (around 2.5-fold) 
in the supernatants three days after conc A activation 
(Fig.  3B and Additional Table  S6b). Finally, we assessed 

Fig. 2 Expression levels of hsa-miR-150-5p, hsa-miR-93-5p, and hsa-miR-92b-3p in the plasma of cancer patients collected at the time of enrollment 
(t=0). A Low levels of both hsa-miR-150-5p and hsa-miR-93-5p were measured in patients who died from COVID-19 or COVID-19-related reasons 
(Dead COVID-19+). Both miRNAs had lower levels in patients who died from COVID-19-related causes (Dead COVID-19+) than in alive patients 
(Recovered) and patients who died from non-COVID-19-related causes (Dead COVID-19-). Some samples did not have RT-qPCR amplification 
signal: hsa-miR-150-5p (n = 2) and hsa-miR-93-5p (n = 5) in the Recovered group, hsa-miR-150-5p (n = 1) and hsa-miR-93-5p (n = 1) in the Dead 
COVID-19- group; B In pair-matched samples (n =10), the levels of hsa-miR-92b-3p correlated with COVID-19 test positivity (Wilcoxon test) P value 
summary:*<0.05; **<0.01; ***<0.001; ****<0.0001

Fig. 3 Levels of miRNAs in activated peripheral blood mononuclear cells (PBMC), their supernatants, and in serum samples of Pfizer-BioNTech 
vaccinated healthy individuals. A Variation of the expression levels of hsa-miR-92b-3p, hsa-miR-150-5p, and hsa-miR-93-5p in PBMC at six 
days after activation with TLR-7/8 agonist (αTLR7/8), T cell mitogen concanavalin A (conc A), compared with unstimulated PBMC; B Variation 
of the expression levels of secreted hsa-miR-92b-3p, hsa-miR-150-5p, and hsa-miR-93-5p into the supernatants of PBMC at three and six days 
after activation with αTLR7/8, conc A, compared with supernatant of unstimulated PBMC; C Variation of hsa-miR-92b-3p, hsa-miR-150-5p, 
and hsa-miR-93-5p levels in the serum samples of healthy individuals (n = 23) collected at one, three, six, and nine months after the administration 
of the second dose of the Pfizer-BioNTech vaccine; D Variation of hsa-miR-92b-3p, hsa-miR-150-5p, and hsa-miR-93-5p levels in the pair-matched 
serum samples of healthy individuals at different times after the administration of the second dose of the Pfizer-BioNTech vaccine. (In A and B, 
Unpaired t-test. P value summary: * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001; ns not significant; in D, Wilcoxon test)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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the levels of these three miRNAs in the serum samples 
collected from 23 healthy individuals at one, three, six, 
and nine months after the second dose of the Pfizer-
BioNTech vaccine. The median serum levels of hsa-miR-
93-5p increase progressively up to month nine, whereas 
those of hsa-miR-92b-3p and hsa-miR-150-5p reached 
the plateau at month six (Fig. 3C). When we performed a 
pair-matched analysis, we observed a similar trend, with 
most healthy individuals having the serum levels of all 
three miRNAs increasing significantly between month 
one and month three. In contrast, only hsa-miR-92b-3p 
and hsa-miR-93-5p continued to increase consider-
ably between month three and month six in most of the 
healthy individuals. No significant difference was meas-
ured between months six and nine (Fig. 3D). We meas-
ured an overall increase of the three miRNAs at months 
six and nine compared with month one (Additional Fig-
ure S3C). We measured high levels of SARS-CoV-2 anti-
spike (S) protein IgG (> 50.0 AU/mL) at month one as a 
measure of the response to the Pfizer-BioNTech vaccine 
(Additional Figure S3D). SARS-CoV-2 anti-spike (S) pro-
tein IgG levels decreased over time but remained above 
the limit (> 50.0 AU/mL) up to month nine.

We can conclude that increased levels of hsa-miR-
92b-3p, hsa-miR-93-5p, and hsa-miR-150-5p secreted 
into the cell supernatant can be associated with the 
activation of PBMC by in  vitro stimulation and their 
increased serum levels over time can be associated with 
the response to anti-COVID-19 vaccine.

CORSAIR and non‑CORSAIR miRNAs and their immune 
cell‑related signaling pathways
Then, we investigated the targets and potential pathways 
regulated by CORSAIR and non-CORSAIR miRNAs by 
Gene Set Enrichment Analysis (GSEA). Among the 1,167 
miRNAs (CORSAIR and non-CORSAIR) expressed in 
the immune cells, we selected those whose expression 
exceeded one standard deviation, referred to as “high” 
(Additional Table S4a). We identified the target genes and 
the regulated pathways by selected CORSAIR (n = 4) and 
non-CORSAIR (n = 139) miRNAs (Additional Table S4b, 
c, d, e). After setting the p-value cutoff = 0.05, we found 
the TGF-beta-signaling pathway to be the top Hall-
mark pathway regulated by the four CORSAIR miRNAs 
(Additional Figure S4A and Additional Table S4c). Con-
versely, the TNF-a-signaling-via-NFkB pathway was the 
top Hallmark pathway regulated by the 139 non-COR-
SAIR miRNAs (Additional Figure S4B and Additional 
Table  S4e). Of note, hsa-miR-150-5p can target seven 
out of the eleven genes regulating the TGF-beta-sign-
aling pathway, and hsa-miR-93-5p can target 64 out of 
the 199 genes regulating the TNF-a-signaling-via-NFkB 
pathway (Additional Table S4f ). These results supported 

the evidence that differential levels of miRNAs hsa-miR-
150-5p and hsa-miR-93-5p detected in the plasma of 
patients with different clinical outcomes can be associ-
ated with immune cell functions during COVID-19.

Levels of selected CORSAIR miRNA in the extracellular 
vesicles secreted by human airway epithelial cells are 
affected by SARS‑CoV‑2 infection
We wanted to assess whether miRNAs in the plasma of 
cancer patients affected by COVID-19 could also origi-
nate from the lung epithelial cells during the SARS-
CoV-2 infection. We infected NuLi-1 (human bronchus 
airway epithelium) and HBEC3-KT (normal immortal-
ized human bronchial epithelium) cells with the original 
SARS-CoV-2 Washington (USA-WA1/2020) strain and 
the variant SARS-CoV-2 UK (Alpha/B.1.1.7) established 
by CDC on December 29, 2020 (Additional Table S7). We 
measured the levels of the fourteen miRNAs detected 
in the patient’s plasma (Additional Table  S6a) in the 
extracellular vesicles (EVs) secreted into the superna-
tants by the two infected lung epithelial cell lines. The 
SARS-CoV-2 Washington (USA-WA1/2020) infection 
induced an enrichment of hsa-miR-92b-3p and hsa-
miR-93-5p in the secreted EVs compared with mock 
infection in two independent experiments, R1 and R2. 
Conversely, the infection with the variant SARS-CoV-2 
UK (Alpha/B.1.1.7) had heterogeneous effects (Fig.  4). 
A heterogenous effect was also measured for the other 
seven miRNAs (Additional Figure S5). The remaining five 
hsa-miR-150-3p, hsa-miR-150-5p, hsa-miR-182-5p, hsa-
miR-486-5p, and hsa-miR-638 were not detected in any 
of the secreted EVs (Additional Table S6c).

We can conclude that the infection of lung epithelial 
cells by SARS-CoV-2 Washington (USA-WA1/2020) can 
be associated with a general modulation of miRNA levels 
measured in the secreted EVs.

Survival model for COVID‑19‑related death in cancer 
patients
We used the 10 miRNAs  (Additional Table  S6A) meas-
ured in plasma samples  of both 2020 and 2021 cohorts 
collected at the time of the first COVID-19 positive test 
and four demographical features to evaluate if plasma lev-
els of miRNAs could predict the time to death in patients 
with COVID-19. We tested 151 COVID-19-positive 
cancer patients treated at UT-MDACC during 2020 and 
2021. Patients were randomly split into 106 (70%) individ-
uals for the training set (with 16 deaths related to COVID-
19 and 19 from other causes) and the remaining 45 (30%) 
individuals for the testing set (with four deaths related 
with COVID-19 and six from other causes). Time to event 
was defined as the interval between the first COVID-19 
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positive test and death or the last follow-up time. In this 
study, deaths related to other causes precluded COVID-
19-related death. Therefore, the analysis considered alter-
native causes of death as competing risk events.

In the training set, the plasma levels of hsa-miR-93-5p 
and hsa-miR-150-5p showed significant hazard ratios both 
in the sub-distributional hazard model [HR:0.31 (95% CI: 
0.11–0.85); P = 0.023) and HR:0.30 (95% CI:0.11–0.83); 
P = 0.020] and in cause-specific cox model [HR:0.31 (95% 
CI: 0.11–0.85); P = 0.022 and HR:0.30 (95% CI:0.11–0.82); 
P = 0.019] for hsa-miR-93-5p and hsa-miR-150-5p, respec-
tively (Additional Table S8). No significant associations were 

observed in the non-COVID-19-related death cases (Addi-
tional Table S8). Patients were further stratified into low vs. 
high levels of the two miRNAs mentioned above based on 
median cut points. Their cumulative incidence plots yielded 
a statistically significant difference in COVID-19-related 
death (P = 0.016 for hsa-miR-150-5p and P = 0.014 for hsa-
miR-93-5p (Fig.  5A and B). The probability of COVID-
19-related death in 15 months for the low hsa-miR-150-5p 
group is found to be 20%, whereas it is observed to be 
around 7% in the high hsa-miR-150-5p group. However, the 
probability of non-COVID-19-related death is similar for 
low and high hsa-miR-150-5p groups (14% vs. 18%). Similar 

Fig. 4 Effect of SARS-CoV-2 infection on miRNA expression levels in the EVs secreted from normal bronchus epithelial cells. Levels of hsa-miR-92-3p 
and hsa-miR-93-5p were significantly enriched in the EVs secreted from NuLi-1 and HBEC3-KT cells after the infection with SARS-CoV-2 Washington 
(USA-WA1/2020). A heterogeneous effect was measured after infection with the variant SARS-CoV-2 UK (Alpha/B.1.1.7) (Unpaired t-test. P value 
summary: * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001; ns not significant)
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findings were observed for hsa-miR-93-5p with a 20% vs. 
7% probability of COVID-19-related death in low and high 
groups. Non-COVID-19-related death had 11% vs 21% 
probability in low and high groups. The number of patients 
at risk for each group is reported in the Additional Table S9.

A Cox Proportional Hazard model consisting of age, the 
plasma level of hsa-miR-150-5p and hsa-miR-93-5p devel-
oped on training group yielded concordance c-indexes of 
78.2% and 74.3% with standard errors of 0.062 and 0.108 in 
training and testing sets, respectively. The AUC at each time 
point is consistently greater than 70% in training and test-
ing groups (Additional Figure S6A). The estimated Cause-
Specific Hazard model for COVID-19-related death had 
respective HR of 1.08, 6.29 ×  10–13, and 1.27 ×  10–6 for age, 
hsa-miR-150-5p, and hsa-miR-93-5p, respectively (Addi-
tional Table  S10). The results indicate that older age, lower 
plasma levels of hsa-miR-150-5p, and lower hsa-miR-93-5p 
are associated with higher COVID-19-related death risk. Our 
survival model shows excellent predictive power using the 
current internal validation mechanism. We further stratified 
patients into high versus low groups by median value and 
evaluated their survival performance for hsa-miR-150-5p and 
hsa-miR-93-5p. Our results indicate that low levels of both 
miRNAs are significantly associated with an increased risk of 

COVID-19-related death (Fig.  5A, B and Additional Figure 
S6B).

Discussion
The data of our analysis indicate that some miRNAs 
located in regions in proximity to the SNPs associated 
with the severity and susceptibility of COVID-19 (COR-
SAIR) may be related to COVID-19 clinical outcomes of 
patients with cancer. Some pieces of evidence support 
this assumption. A remarkable number of miRNAs are 
located in CORSAIR. Among the 157 CORSAIR miR-
NAs, 29 miRNAs are co-expressed in both immune 
cells and normal lung epithelial cells, and at least three 
miRNAs (maximum 13) share the same confirmed tar-
get gene (Additional Table  S11) based on miRTarbase 
[46]. Notably, among the 1678 identified target genes, 
935 are proved to be targets of three combined miR-
NAs (minimum), five genes are targets of 10 combined 
miRNAs, and one gene is the target of 13 combined 
miRNAs (maximum). The convergence of multiple miR-
NAs on specific target genes is remarkable. Some of the 
top-ranked target genes are associated with COVID-
19. Elevated amyloid beta precursor protein (APP) 

Fig. 5 Increased risk of COVID-19-related death for higher levels of hsa-miR-150-5p and hsa-miR-93-5p. A The probability of COVID-19-related 
and non-COVID-19-related death overtime stratified by high/low plasma levels of hsa-miR-150-5p; B The probability of COVID-19-related 
and non-COVID-19-related death overtime stratified by high/low plasma levels of hsa-miR-93-5p
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was proposed to be involved in long-term neurological 
manifestations of COVID-19 disease [47], and patients 
with COVID-19-associated neurological syndromes 
exhibited impaired amyloid processing [48]. DICER1 
is a ribonuclease required to produce the active small 
RNAs that repress gene expression. An isoform lack-
ing exons 7 and 8 named antiviral Dicer (aviD) also acts 
as a potent antiviral agent with activity against RNA 
viruses, including the Zika and SARS-CoV-2 viruses 
[49]. LARP1, an essential effector protein in the mTOR 
pathway, may contribute to preferential translation of 
5′ terminal oligo-pyrimidine transcripts in response to 
the SARS-CoV-2 and relies on a nonstructural protein, 
Nsp1 expression involved in shutting down host transla-
tion [50]. LARP1 may have an antiviral function, as the 
gene depletion resulted in a substantial upregulation of 
SARS-CoV-2 RNA [51]. The signaling pathways of the 
targets of 29 co-expressed CORSAIR miRNAs  (Addi-
tional Table  S11) identified several pathways in the 
top 50 that are related to viral infections, including 
“Human cytomegalovirus infection” (P = 4.00305E-
11), “Human T-cell leukemia virus one infection” 
(P = 4.70875E-11), “Kaposi sarcoma-associated herpes-
virus infection” (P = 2.3361E-08), “Human papilloma-
virus infection” (P = 5.81876E-08), as well as “Immune 
System” (P = 1.98919E-08) (Additional Table  S12). We 
found the TGF-beta-signaling pathway on the top of 
the Hallmark pathways regulated by the four COR-
SAIR miRNAs highly expressed in immune cells, with 
the TGF-beta-signaling pathway playing an important 
role (inhibitory effects) in regulating T cell activation 
and differentiation [52, 53]. On the other hand, the top 
Hallmark pathway regulated by the 139 non-CORSAIR 
miRNAs highly expressed in immune cells was TNF-
alpha signaling via NF-kB, which is involved in regulat-
ing inflammatory responses [54] (Additional Table S4a, 
4b, 4c, 4d, 4e). Finally, some of the SNPs we studied are 
located in proximity of candidate Cis-Regulatory Ele-
ments (cCREs), such as promoter-like (PLS), proximal 
enhance-like (pELS), and distal enhancer-like (dELS) 
signatures, based on UCSC Genome Browser Genome 
on Human (GRCh38/hg38). Two examples are reported 
for rs11541192 and rs4801778 (Additional Figure S7).

Cancer patients are at high risk for aggressive 
COVID-19 evolution and adverse clinical outcomes. It 
has been previously reported that circulating miRNAs 
have the potential to work as biomarkers for COVID-
19 and the severity of the disease. In particular, a sig-
nature of three miRNAs (miR-148a-3p, miR-451a, 
and miR-486-5p) could distinguish between patients 
admitted to the intensive care unit (ICU) and ward 
patients [AUC (95% CI) = 0.89 (0.81–0.97)]. Among 
critically ill patients, a signature based on two miRNAs 

(miR-192-5p and miR-323a-3p) differentiated ICU 
non-survivors from survivors [AUC (95% CI) = 0.80 
(0.64–0.96)] [55]. In another study, the serum levels 
of the miR-92a-2-5p were negatively correlated with 
degrees of adverse reactions after COVID-19 vacci-
nation, whereas miR-148a levels were associated with 
specific antibody titers [56]. Another study detected 
significant changes in the levels of circulating miR-
150-5p, miR-375, miR-122-5p, miR-494-3p, miR-
3197, miR-4690-5p, miR-1915-3p, and miR-3652 in 
the plasma of COVID-19 patients compared with 
healthy controls. Furthermore, a sharp decline in the 
miR-150-5p plasma levels in COVID-19 patients could 
enhance SARS-CoV-2 infection. MiR-150-5p regu-
lates the SARS-CoV-2 encoded non-structural protein 
10 (nsp10) gene, essential for viral replication and in 
evading host immune response [57–59]. The above 
studies were conducted on non-cancer patients.

Based on this evidence, we evaluated the levels of 
miRNAs located in CORSAIR in the plasma of cancer 
patients and correlated them with their clinical out-
comes. We found that low plasma levels of hsa-miR-
150-5p were associated with higher COVID-19-related 
death. Because we previously showed that low plasma 
levels of hsa-miR-150-5p were associated with bacterial 
sepsis [35], we hypothesized that there might be poten-
tial similarities between the two types of infections dur-
ing the acute phase, even though they are two different 
types of infectious diseases (SARS-CoV-2 and bacterial 
infection) [60, 61]. We saw a similar association with 
hsa-miR-93-5p, a sepsis-related miRNA. The similarity 
could consist of the cytokine storm syndrome. How-
ever, the time course (hours/few days vs. several days) 
and the immune response types (bacterial vs. viral) 
may differ between sepsis and COVID-19. We investi-
gated if the plasma levels of hsa-miR-150-5p and hsa-
miR-93-5p could derive from immune cells. We found 
significantly increasing levels of these two miRNAs in 
the supernatants of PBMC at three and six days after 
activation with TLR7/8 agonist (R848) and antigen-
independent T cell activator (conc A). The increased 
levels in the supernatant demonstrated that the activa-
tion of immune cells (monocytes/macrophages, den-
dritic cells, and T cells) was associated with a higher 
secretion of hsa-miR-150-5p and hsa-miR-93-5p. We 
also measured this increase in healthy individuals’ 
plasma after receiving the second dose of the Pfizer-
BioNTech COVID-19 vaccine. A similar increase was 
measured for hsa-miR-92b-3p. Therefore, the high 
plasma levels of hsa-miR-150-5p, hsa-miR-93-5p, and 
hsa-miR-92b-3p in vaccinated healthy individuals may 
result from an effective immune cell activation and the 
anti-SARS-CoV-2 response. Conversely, the low plasma 
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levels of hsa-miR-150-5p and hsa-miR-93-5p in cancer 
patients infected by SARS-CoV-2 and who died from 
COVID-19-related causes may result from an ineffec-
tive immune cell activation and response to viral infec-
tion responsible for the adverse clinical outcomes [62]. 
On the other hand, the decreased plasma levels of hsa-
miR-92b-3p in cancer patients that became negative for 
the SARS-CoV-2 test may reflect an off-switch process 
of the immune responses (resolution) during the recov-
ery from COVID-19.

We previously showed that low levels of hsa-miR-
150-5p were associated with high levels of its targets 
IL-10 and IL-18 [35], which can promote Th2 cell-medi-
ated immune response. IL-10, a Th2 cell cytokine and 
highly expressed by Treg cells (immunosuppressive) [63], 
inhibits the secretion of IL-12 and IFN-γ and accord-
ingly blocks the polarization of Th0 cells into Th1 cells 
[64], which are a central player in the anti-viral immune 
response [60, 63]. Furthermore, in absence of IL-12, IL-18 
facilitates Th2 cell-mediated responses through IL-3, 
IL-9, and IL-13 [65]. Th1 cell-mediated immune response 
is associated with the resolution of COVID-19 and good 
prognosis [66]. In contrast, an overreactive Th2-cell-
mediated response is associated with poor prognosis 
[67, 68]. Therefore, low plasma levels of hsa-miR-150-5p 
could be associated with an increased risk of poor prog-
nosis because of sustained Th2 cell-mediated response, 
with high levels of IL-10 [69, 70] and IL-18 associated 
with poor prognosis in COVID-19 [71–74]. Furthermore, 
Th2 cell-mediated response could hinder SARS-CoV-2 
infection resolution (prolonged infection), determining 
an additional effort of the immune system to clear the 
infection associated with high levels of pro-inflammatory 
cytokines (IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-15, IL-18, 
IL-33, IP-10)[67, 75].

Dysregulated host immune response is a characteris-
tic of bacterial sepsis and, similar to COVID-19, aber-
rant levels of cytokines, hyperinflammatory “cytokine 
storm” response, and altered balance of T cell co-stim-
ulatory and co-inhibitory signaling occur [76]. Increas-
ing evidence proposes a potential role of host Th17 
inflammatory responses in contributing to severe 
COVID-19 and unfavorable prognosis [77–80], in 
which IL-1β, IL-6, IL-17, TNF-α, GM-CSF, and IFN-γ 
are involved in Th17-related responses [81] associated 
with ARDS leading to pulmonary edema, lung failure, 
and liver, heart, and kidney damage [3, 80]. Signifi-
cantly, hsa-miR-93-5p regulates Th17 cell differentia-
tion by targeting STAT3 [82, 83]. Furthermore, it was 
reported that Th17 cells enhanced viral persistence 
and inhibited T cell cytotoxicity via IL-17, resulting in 
chronic inflammatory disease [84]. Therefore, low lev-
els of hsa-miR-93-5p might be associated with a Th-17 

cell-mediated response to SARS-CoV-2 infection 
and be responsible for severe COVID-19. It might be 
hypothesized that low levels of both hsa-miR-150-5p 
and hsa-miR-93-5p in patients with poor prognosis are 
associated with a reduced ability to clear the SARS-
CoV-2 infection due to a Th2 cell-skewed immune 
response and a Th-17 cell-mediated pro-inflammatory 
response.

It was found that hsa-miR-92b-3p, a potent regu-
lator of the mTOR singling pathways, was induced 
by hypoxia in pulmonary artery smooth muscle cells 
(PASMCs) and induced their proliferation by targeting 
TSC1, a negative regulator in the mTOR signaling [85]. 
Therefore, it is possible that during SARS-CoV-2 infec-
tion, high levels of hsa-miR-92b-3p may be induced 
in the lung tissue and promote PASMC proliferation 
in response to tissue damage during COVID-19. In 
addition, it was found that in primary normal bron-
chial epithelial cells (NHBE) treated with IL-13, a 
type 2  T helper (Th2) cell cytokine used to induce an 
asthma-like phenotype of the airway epithelium, hsa-
miR-92b-3p was the most downregulated miRNAs 
measured in secreted EVs in response to IL-13 [86]. 
Because recovering patients who became COVID-
19 negative had a concomitant reduction of hsa-miR-
92b-3p plasma levels (Fig. 2B), this decrease may result 
from the counterbalancing Th2-mediated response 
reflecting the declining of the anti-viral Th1-mediated 
immune responses during the recovery phase from 
the disease [63] and reflect the non-infected status of 
the human airway epithelial cells. Therefore, the vari-
ation of hsa-miR-92b-3p plasma levels may correlate 
with the infection and stress status of the human air-
way epithelium, and the decreased plasma levels of hsa-
miR-92b-3p that were measured when patients became 
SARS-CoV-2 negative may reflect the recovery process 
of the infected lung tissue. Because both NuLi-1 and 
HBEC3-KT cells did not express and secrete detectable 
levels of hsa-miR-150-5p after mock and SARS-CoV-2 
infection, whereas increased levels of hsa-miR-150-5p 
were measured in the supernatants of activated PBMC 
(d = 6) and after Pfizer/BioNTech vaccination, the 
variation of levels of hsa-miR-150-5p  in the plasma of 
cancer patients may primarily result from an effective 
immune response and not from infected lung epithelial 
cells.

Conclusions
In conclusion, our study presents a novel approach to 
identifying miRNAs as predictor biomarkers of disease 
aggressivity and effective immune responses to SARS-
CoV-2 in cancer patients based on their location at 
specific COVID-19 risk-associated genomic regions, 
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CORSAIR, identified by genome-wide association 
studies. Besides miRNAs, other classes of non-coding 
RNAs, such as long non-coding RNAs (lncRNAs), 
located in the CORSAIR, could be potentially inves-
tigated. We acknowledge that some weaknesses are 
present in our study. More comprehensive and in-
depth studies on the regulatory associations between 
CORSAIR miRNAs and COVID-19-related SNPs are 
required to better evaluate their functional mecha-
nisms in COVID-19. Furthermore, additional studies 
are necessary to dissect the individual cell contribu-
tion to the miRNAs measured in the plasma, and time 
course analyses are essential to evaluate the variation 
of each miRNA across the different stages of COVID-
19. Finally, an in-depth analysis using blood samples 
from specific and homogenous populations of cancer 
patients (e.g., same cancer types) is required.

Finally, we believe that a similar approach used in this 
study can potentially be used to identify patients at risk 
for poor clinical outcomes in viral infections other than 
COVID-19, for example, flu (influenza viruses), cyto-
megalovirus, cold (rhinoviruses, parainfluenza, and sea-
sonal coronaviruses) that can cause severe complications 
(e.g., pneumonia) and negatively impact the prognosis of 
immunocompromised and fragile patients, such as can-
cer patients.
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