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Abstract 

Background  Cancer is the leading cause of disease-related mortality in children. Causes of leukemia, the most com-
mon form, are largely unknown. Growing evidence points to an origin in-utero, when global redistribution of DNA 
methylation occurs driving tissue differentiation.

Methods  Epigenome-wide DNA methylation was profiled in surrogate (blood) and target (bone marrow) tis-
sues at birth, diagnosis, remission and relapse of pediatric pre-B acute lymphoblastic leukemia (pre-B ALL) patients. 
Double-blinded analyses was performed between prospective cohorts extending from birth to diagnosis and retro-
spective studies backtracking from clinical disease to birth. Validation was carried out using independent technolo-
gies and populations.

Results  The imprinted and immuno-modulating VTRNA2-1 was hypermethylated (FDR<0.05) at birth in nested 
cases relative to controls in all tested populations (totaling 317 cases and 483 controls), including European and His-
panic ancestries. VTRNA2-1 methylation was stable over follow-up years after birth and across surrogate, target 
and other tissues (n=5,023 tissues; 30 types). When profiled in leukemic tissues from two clinical cohorts (totaling 644 
cases), VTRNA2-1 methylation exhibited higher levels at diagnosis relative to controls, it reset back to normal levels 
at remission, and then re-increased to above control levels at relapse. Hypermethylation was significantly associated 
with worse pre-B ALL patient survival and with reduced VTRNA2-1 expression (n=2,294 tissues; 26 types), supporting 
a functional and translational role for VTRNA2-1 methylation.
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Conclusion  This study provides proof-of-concept to detect at birth epigenetic precursors of pediatric pre-B 
ALL. These alterations were reproducible with different technologies, in three continents and in two ethnicities, 
and can offer biomarkers for early detection and prognosis as well as actionable targets for therapy.

Key points 

• Precursors of pediatric acute lymphoblastic leukemia may be of epigenetic origin, detectable since birth and affect-
ing patient prognosis.

• These epigenetic precursors can be robust over several years and across several populations, ethnicities and surro-
gate and target tissues.

Keywords  Pediatric leukemia, Epigenetics, DNA methylation, VTRNA2-1, Birth cohort, Neonatal blood spots

Background
Pediatric acute lymphoblastic leukemia (ALL) is the 
most common childhood cancer [1] and originates 
either from mature B-cells (2%), T-cells (15%), or 
early/precursor B-cells (80-85% of ALL) [2]. Despite 
high ALL survival, efforts towards its prevention are 
warranted due to relapse and long-term adverse effects 
of therapy [2].

Unlike adult leukemia, the majority of pediatric leuke-
mias do not have well-established causes. Because ALL 
is rare, the limited evidence on risk factors stems mostly 
from retrospective studies, offering abundant samples 
with limitations of recall and selection bias [3]. Moreover, 
studies on underlying molecular causes are based largely 
on biospecimen collected after disease onset, with likeli-
hood of reverse causality bias, wherein identified molec-
ular alterations can be due to cancer rather than its cause 
[3, 4]. Prospective designs would be ideal, but no single 
cohort can collect enough pre-diagnostic biospecimens 
given ALL rarity. Hence, international efforts and novel 
approaches are crucial.

Compared to adult cancers, the overall mutation bur-
den is generally low in pediatric leukemias, and the most 
commonly altered genes are epigenetic regulators [5], 
associated with DNA methylome-wide alterations [6, 7]. 
Thus, it is plausible that epigenetic mechanisms play a 
central role in pediatric cancer development particularly 
that it may have an origin in-utero [4, 8, 9], a period of 
cellular programming driven largely by epigenetics.

Hence, we sought to identify for the first time genome-
wide methylation alterations in newborns before the 
onset of pediatric precursor B-cell ALL (pre-B ALL) and 
assess the translational potential of the findings in pre- 
and post-diagnosis periods using different technologies, 
populations, ethnicities and tissue matrices, including 
surrogate and target tissues.

Results and discussion
DNA methylation alterations in neonatal blood associated 
with pre‑B ALL development
Epigenome-wide analysis in the prospective MoBa (Nor-
way) and the retrospective CCLS (USA) discovery datasets 
(Supplementary Table 1) identified significant (FDR<0.05) 
differentially methylated regions (DMRs) in the blood of 
newborns who later developed pediatric pre-B ALL, rela-
tive to controls (Supplementary Fig.  1; Supplementary 
Tables  2A-B). DMRs in both studies were significantly 
enriched in CpG Shores, Promoters, First Exons, Exon-
Intron/Intron-Exon boundaries and imprinted genes while 
being depleted in Open Sea, Shelf and intronic regions 
(p<0.05) (Supplementary Fig. 2). Both studies significantly 
converged (p<0.01) on several CpGs (Supplementary 
Tables  2A-B), among which 7 passed all filters (Fig.  1A), 
including effect size ≥ 3% (considered sufficiently high for 
validation by targeted sequencing) (Supplementary Fig. 1). 
All 7 CpGs mapped to the imprinted VTRNA2-1, which 
showed hypermethylation in nested cases relative to con-
trols (Fig. 1A). VTRNA2-1 encompassed 9 additional CpGs, 
which were significant (FDR<0.05) in both studies’ Crude 
Models (Supplementary Table  2A). VTRNA2-1 meth-
ylation showed sex-dependent but ethnicity-independent 
alterations in the European and Hispanic descents (Fig. 1B), 
with the effects being observed in females, though requir-
ing validation in larger sample sizes given that stratification 
by sex reduces power. In the replication phase, findings 
were reproducible in independent samples from MEDC 
(Australia) using a different technology, EpiTyper (Fig. 1C).

Functional analysis of VTRNA2‑1
As expected for an imprinted gene, VTRNA2-1 methyla-
tion levels were centered around 50±10% and were simi-
lar across various tissue types, including bone marrow 
(pre-B ALL target tissue) and cord blood (surrogate tissue) 
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(p>0.05), with the exception for placenta (being extra-
embryonal) and sperm (being hypomethylated given that 
VTRNA2-1 is maternally imprinted) (Fig. 1D). In various 
tissue types, VTRNA2-1 methylation negatively correlated 
with its gene transcription (FDR<0.05), including in pedi-
atric pre-B ALL tissues (Supplementary Fig. 3 and Fig. 1E).

Longitudinal analysis in controls and cases pre‑diagnosis
Assessment of VTRNA2-1 methylation stability over time 
showed that methylation at all 16 CpGs was similar across 
birth years in cord blood samples collected from controls 
and pre-diagnostic cases from 2000-2008 in MoBa (Sup-
plementary Fig. 4A), and this was replicated in neonatal 
blood spots collected from 1984-1994 in an independ-
ent population, UKCS (UK) (Supplementary Fig.  4B). 
Moreover, there was no significant difference (p>0.05) in 
VTRNA2-1 methylation levels between cord blood (i.e. 
at birth) and peripheral blood collected from the same 
individuals (controls) at age three years (Fig. 1F), which is 
the peak incidence age of pre-B ALL [12]. This highlights 

the stability of VTRNA2-1 methylation over critical time 
windows and across matched cord and peripheral blood 
tissues, reinforcing its observed methylation stability in a 
panel of human tissues (Fig. 1D).

Longitudinal analysis post‑diagnosis
In line with the VTRNA2-1 hypermethylation observed 
at birth in nested cases versus controls, VTRNA2-1 was 
significantly hypermethylated in pediatric pre-B ALL 
tissues at diagnosis compared to controls, regardless 
of diagnostic matrix (surrogate=blood or target=bone 
marrow, Fig. 2A). This was based on the NOPHO (Nor-
dic countries) cohort and validated in the QcALL 
cohort (Canada) (Supplementary Fig.  5). At remission, 
VTRNA2-1 methylation levels were reset to normal, 
and, at relapse, they re-increased to above control levels 
(Fig.  2A). This trend was validated in subjects matched 
at diagnosis and remission in QcALL (Fig.  2B). Overall, 
these results suggest VTRNA2-1 methylation as a marker 
of pre-B ALL prognosis, including leukemic state.

Fig. 1  Discovery, validation and functional analysis of VTRNA2-1 methylation in association with pediatric pre-B ALL development. A Upper section: 
Prioritized differentially methylated genes with at least one CpG with effect size ≥3% after DMR analysis for blood samples taken from newborns 
of either MoBa or CCLS. 7 CpG sites were significantly enriched (p = 2.2 x 10-16) between MoBa and CCLS relative to the total number of array 
CpGs analyzed (470,963 CpGs); all CpGs mapped to the same gene, which was also significantly enriched (p = 4.4 x 10-3) relative to the total 
number of genes in the human genome (21,306 genes) (Fisher’s Exact Test). Lower section: The 7 significant CpGs within the DMR of VTRNA2-1 are 
symbolized in CCLS and MoBa by circles of varying sizes and colors, representing the effect sizes and directions of effect, respectively, as per the 
figure legend. The 7 CpGs are arranged in order according to their genomic position. The direction of effect is reported for the pre-B ALL nested 
cases relative to the controls: hypermethylation (Hypermeth) or hypomethylation (Hypometh). B VTRNA2-1 differential methylation in nested cases 
and controls was stratified by subject sex and ethnicity in MoBa and CCLS cohorts. Data points represent average methylation values at each CpG 
site, and the ribbons denote the 95% confidence intervals. CpG HM450 IDs are shown on the x-axes. In addition to the CpGs (in red) identified 
in the Adjusted Models in both MoBa and CCLS, we also show (in black) the additional CpGs identified in the Crude Models in both MoBa and CCLS 
(detailed in Supplementary Fig. 7 and Supplementary Table 2). C Validation, based on profiling of VTRNA2-1 methylation using EpiTyper, which 
is sequencing- rather than array-based, applied to an independent set of biological samples from MEDC. Data points represent average methylation 
values at each CpG site, and the error bars denote the 95% confidence intervals. The p-values indicate the statistical significance across the whole 
DMR region and were calculated by inverse variance based meta-analysis using METAL software. The DMR profiled by EpiTyper partially overlaps 
with that by HM450; specifically, CpGs 10 and 11 in (C) are identical to the last two CpGs in (B), cg16615357 and cg18797653, respectively. CpG1-2 
and CpG3-4 each represents an average methylation value of two adjacent CpGs, as detected by EpiTyper. The genomic coordinates of the CpG 
ID numbers are detailed in Supplementary Fig. 8. D Box plots showing the methylation distribution of VTRNA2-1 across a panel of human tissue 
types using data extracted from the EWAS Open Platform [10]. The box plots encompass the first quartile (bottom border), the median (middle 
line), the fourth quartile (upper border) and the extreme values (dots). No statistically significant differences (p>0.05; Mann-Whitney test) were 
detected in VTRNA2-1 mean methylation between the target bone marrow and surrogate cord blood tissues. The sample sizes (N) are indicated 
for each tissue type. (n=5,023 tissues; 30 types) E Pearson correlation of VTRNA2-1 expression with the methylation of its CpGs in a panel 
of cancer tissues extracted from the MEXPRESS database [11] (n=2,273 tissues; 25 types). Cancer types and sample sizes are as follows: kidney 
renal papillary cell carcinoma (KIRP, N = 140), rectum adenocarcinoma (READ, N = 28), pheochromocytoma and paraganglioma (PCPG, N = 66), 
skin cutaneous carcinoma (SKCM, N = 74), testicular germ cell tumor (TGCT, N = 47), uveal melanoma (UVM, N = 28), thyroid carcinoma (THCA, 
N = 162) , kidney renal clear cell carcinoma (KIRC, N = 136), breast invasive carcinoma (BRCA, N = 106), pancreatic adenocarcinoma (PAAD, N 
= 67), colon adenocarcinoma (COAD, N = 95), prostate adenocarcinoma (PRAD, N = 75), liver hepatocellular carcinoma (LIHC, N = 90), bladder 
urothelial (BLCA, N = 106), uterine corpus endometrial carcinoma (UCEC, N = 121), head and neck squamous cell carcinoma (HNSC, N = 103), lung 
adenocarcinoma (LUAD, N = 74), mesothelium (MESO, N = 42), lung squamous cell carcinoma (LUSC, N = 44), glioblastoma multiforme (GBM, N 
= 44), sarcoma (SARC, N = 82), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, N = 127), brain lower grade glioma 
(LGG, N = 96), stomach adenocarcinoma (STAD, N = 217) and esophageal carcinoma (ESCA, N = 103). The asterisk (*) mark significant correlation 
after adjustment for multiple testing (FDR < 0.05). One CpG (cg11978884) was omitted from the analysis because it had no methylation values. 
F VTRNA2-1 methylation in MoBa paired samples over time. None of the VTRNA2-1 CpGs were significantly (p>0.05) differentially methylated in cord 
blood collected from the control subjects at age 0 (blue) versus paired peripheral blood collected from the same controls at age 3 (orange) years 
(Wilcoxon test). Methylation values at birth from nested unpaired controls (green) and cases (red) are shown as a reference. The y-axes represent 
the methylation (beta) values, and p values are reported for each CpG. In E-F, the orange rectangles represent CpGs common to Adjusted Models 
of both MoBa and CCLS. The remaining CpGs are those identified in the Crude Models of both datasets

(See figure on next page.)
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Focusing on individual-level data, we observed two 
QcALL patient clusters: C1 exhibited low methyla-
tion levels (10±10%), stable from diagnosis to remission 
(p>0.05), and C2 exhibited at diagnosis higher meth-
ylation levels (~20-100%), which converged to 50±10% 

at remission (p<0.05) (Fig.  2B and Supplementary 
Fig. 6A-B). The C1 and C2 patterns were also observed in 
blood at birth (Supplementary Fig.  6C) and in NOPHO 
(Supplementary Fig.  6D) and are in line with recent 
observations showing that VTRNA2-1 is imprinted in 

(See figure on next page.)
Fig. 2  Longitudinal analysis of VTRNA2-1 methylation post-diagnosis and its hypothesized role in pre-B ALL development. A Methylation 
of VTRNA2-1 CpGs in peripheral blood and bone marrow of cases versus controls at diagnosis, remission and relapse in NOPHO. In purple: 
Methylation of VTRNA2-1 CpGs in peripheral blood samples from sorted B-cells of normal subjects (N=26) and from pediatric pre-B ALL patients 
collected at diagnosis (n=74) from NOPHO. In green: Methylation of VTRNA2-1 CpGs in sorted B-cells (N=26) from bone marrow of fetuses (N=8) 
and in bone marrow samples from cases of pediatric pre-B ALL collected at diagnosis (n=535), remission (n=82) and relapse (n=32) from NOPHO. 
Whiskers represent the minimum and the maximum, while the top, the bottom, and the band in the box represent the first and third quartile 
and the median respectively. Significant differences between methylation of normal and tumor samples are marked for each CpG with an asterisk 
(Wilcoxon test). B Methylation of VTRNA2-1 CpGs in 46 pediatric pre-B ALL samples collected at diagnosis (red) and remission (blue) from the same 
patients in QcALL. Significant differences between methylation at diagnosis and remission are marked for each CpG with an asterisk (Wilcoxon 
test). The data are represented in the form of a dot plot to better visualize the paired samples (a line links each pair). Red and blue box plots are 
also shown for each time point (diagnosis and remission, respectively), representing the first quartile (bottom border), the median (middle line) 
and the fourth quartile (upper border) for each condition. C and D Methylation of VTRNA2-1 CpGs in relation to overall and relapse-free survival, 
respectively, represented by hazard ratios. In NOPHO, 598 pre-B ALL patients were followed up for ten years or more. VTRNA2-1 methylation at two 
CpG sites significantly affected overall survival (denoted by *, Wald test), after adjusting for patient sex, age and risk groups using a Multivariate 
Cox Regression model. Risk group variables also affected overall and relapse-free survival (denoted by ** or ***, Wald test). HR: high risk, IR: 
intermediate risk and SR: standard risk. * denotes p<0.05, ** denotes p<0.01, *** denotes p<0.001. In A-D, the orange rectangles represent CpGs 
common to Adjusted Models of both MoBa and CCLS. The remaining CpGs are those identified in the Crude Models of both datasets. E The 
tumor surveillance model offering a biologically plausible mechanism of VTRNA2-1 in pediatric pre-B ALL development. The basal methylation 
and expression level of VTRNA2-1 determines the degree of gradients (narrow: RIGHT versus wide: LEFT), which is important to shift the balance 
from cell survival (RIGHT) to cell death (LEFT) via PKR activation. Graphic icons used to construct the figure were retrieved from thenounproject.
com. F Summary of the study’s time points, sample types, and VTRNA2-1 results

Fig. 1  (See legend on previous page.)
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Fig. 2  (See legend on previous page.)
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~75% of individuals [13], as in C2, and non-imprinted in 
the remaining portion (C1).

To test whether VTRNA2-1 methylation affects clinical 
outcomes, ten-year follow-up data was used in NOPHO 
(n=598, including 134 relapse and 79 death events; Sup-
plementary Table 3). VTRNA2-1 methylation at two CpG 
sites was significantly inversely associated with overall 
survival (hazard ratio>1; p<0.05), after adjusting for sex, 
age and prognosis risk groups (Fig. 2C), hence, reinforc-
ing the prognostic potential of this gene. No significant 
difference (p>0.05) on patient overall or relapse-free sur-
vival was detected between C1 and C2 (Supplementary 
Fig. 6E-F). Also, no significant associations (p>0.05) were 
observed between VTRNA2-1 methylation and relapse-
free survival (Fig. 2D), although relapse events were more 
frequent (exhibiting higher statistical power) than death 
events, suggesting that VTRNA2-1 methylation may 
likely associate with patient survival more than relapse.

Hypothetical model of VTRNA2‑1 role pre‑ 
and post‑diagnosis
VTRNA2-1 is a 100-nucleotide non-coding RNA with 
central roles in multiple cancer types based on cell, ani-
mal and clinical models and is a known regulator of Pro-
tein Kinase R (PKR)-mediated cell death (Supplementary 
Table 4). A tumor surveillance model for eliminating pre-
cancerous cells has been proposed requiring VTRNA2-
1 hypermethylation and the ‘drop’ in its expression as a 
critical event for PKR activation [14] (Fig. 2E). The effec-
tiveness of this mechanism is speculated to be weaker 
in individuals in which VTRNA2-1 expression is already 
low (i.e. hypermethylated) at birth, prohibiting any pos-
sible drop of VTRNA2-1 levels and subsequent cell death. 
This can lead since birth to the accumulation of precan-
cerous cells that can malignantly transform over time 
(Fig. 2E). VTRNA2-1 methylation could also affect PKR-
mediated immune regulation [15], which can serve as an 
additional hit to activate pre-leukemic clones to progress 
into malignancy and/or could enable existing tumor cells 
to evade immune attack (hence, worsening prognosis).

Conclusions
This work represents a proof-of-concept to detect at 
birth epigenetic precursors of pediatric pre-B ALL by 
mapping for the first time the epigenome across the 
development span of pediatric leukemia (in utero, birth, 
diagnosis, remission and relapse) (Fig.  2F) and liais-
ing prospective studies operating from birth to diagno-
sis with retrospective studies backtracking from clinical 
disease to birth (Supplementary Fig. 1). As such, sample 
sizes of rare biospecimen are augmented (through ret-
rospective studies) while recall, selection and reverse 
causality biases are reduced (through prospectively 

collected data and pre-diagnostic biospecimen), there-
fore, strengthening causality of associations particularly 
when implemented in various populations, which offer a 
natural means of effect randomization. Among identified 
significant genes, VTRNA2-1 methylation alterations in 
neonatal blood were reproducible with different technol-
ogies, in three continents and in two ethnicities. Epige-
netic alterations detectable before diagnosis could serve 
as biomarkers for early detection and as precursors of 
pediatric B-ALL rather than resultant passengers. Blood-
based biomarkers are easy to measure and amenable to 
population screening especially using cost-effective tar-
geted sequencing such as EpiTyper. Moreover, VTRNA2-
1 methylation was consistent across various tissue types 
and showed prognostic potential linked to leukemic state 
and patient survival. This, along with its possible precur-
sor role and its association with prognosis in several can-
cer types (Supplementary Table  4), makes VTRNA2-1 a 
promising target for epigenetic therapy.

Future work based on more cases may be able to 
uncover further molecular precursors of pediatric pre-B 
ALL especially in relation to various age groups, chro-
mosomal aberrations, ethnicities and subject sex. This 
work addresses a timely need of ethnic diversification in 
research studies by including European and underrep-
resented USA Hispanic children, who have the highest 
pediatric leukemia rates worldwide [1]. The identification 
of an epigenetic signature at birth associated with the risk 
and the prognosis of pediatric B-ALL may change our 
paradigm of leukemogenesis by uncovering molecular 
origins of leukemia since the time of birth.
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