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Immune checkpoint inhibitors (ICIs) have revolution-
ized cancer treatment in the last decade. However, it is 
difficult to determine which patients should be offered 
ICIs in clinical practice currently [1]. The KDM5 family, 
an enzymatic family including KDM5A/B/C/D, is a key 
post-translational modification of chromatin by remov-
ing the tri- or di-methyl groups from lysine 4 of histone 
H3 (H3K4) [2]. Interestingly, previous studies showed 
that KDM5A and KDM5C were ubiquitously expressed, 
whereas KDM5B was only discovered in testis, and 
KDM5D mainly in small intestine [3]. The dysregulation 
of KDM5 affected numerous nuclear activities including 
the maintenance of genome integrity, epigenetic inheri-
tance, and transcriptional regulation [2]. Recently, it was 
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Abstract
The lysine-specific demethylase 5 (KDM5) family, a key post-translational modification of chromatin, can shape 
tumor immune microenvironment. Here, we performed an extensive clinical and bioinformatic analysis to explore 
the association between KDM5 mutation and tumor immunity and its impact on the outcomes in pan-cancer 
immunotherapy. In 2943 patients across 12 tumor types treated with immune checkpoint inhibitors, KDM5-mutant 
tumors were associated with favorable overall survival (hazard ratio, 0.72; 95% confidence interval, 0.59–0.87; 
P = 0.004) and objective response rate (41.7% vs. 26.8%; P = 0.001). Further multi-omics analysis revealed KDM5 
mutation was related to boosted tumor immunogenicity, enriched infiltration of immune cells, and improved 
immune responses. In summary, KDM5 mutation indicates enhanced tumor immunity and favorable outcomes 
in pan-cancer immune checkpoint blockade. These results have implication for treatment decision-making and 
developing immunotherapy for personalized care.
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reported that KDM5 was also involved in shaping the 
tumor immune microenvironment. Indeed, the mutation 
of KDM5 could regulate immune escape and immune 
response via its interaction with STING [4], or promote 
immune evasion by recruiting SETDB1 [5]. Accordingly, 
we speculated that the mutation of KDM5 might impact 
the efficacy of immunotherapy and be treated as a poten-
tial predictive biomarker. Here, with accumulated infor-
mation publicly available, we performed a comprehensive 
clinical and bioinformatic study to investigate the char-
acteristics of KDM5A/C mutation and its association 
with the outcomes in pan-cancer immunotherapy (Suppl. 
methods 4).

To investigate the impact of KDM5A/C mutation on 
the efficacy of immunotherapy, 2943 patients with 12 
distinct tumor types from 9 datasets were examined 
(Table S1). These patients were diagnosed as lung can-
cer (n = 1137), melanoma (n = 778), bladder urothelial 

cancer (n = 238), renal cell carcinoma (n = 178), head and 
neck cancer (n = 141), esophagogastric cancer (n = 118), 
glioma (n = 116), colorectal cancer (n = 109), cancer of 
unknown primary (n = 85), breast cancer (n = 41), anal 
cancer (n = 1), and sarcoma (n = 1). Information regard-
ing objective response rate (ORR) and overall survival 
(OS) were collected. Patients who showed complete 
response (CR) or partial response (PR) were categorized 
as responders; patients who experienced stable disease 
(SD) or progressive disease (PD) were classified as non-
responders. Totally, KDM5-mutant tumors were dis-
covered in 196 patients (6.7%) and were associated with 
favorable OS (hazard ratio [HR] = 0.72; 95% confidence 
interval [CI], 0.59–0.87; P = 0.004; Fig.  1A). Addition-
ally, compared with patients with KDM5-non-mutant 
tumors, more KDM5-mutant patients responded to ICIs 
(41.7% vs. 26.8%; P = 0.001; Fig. 1B). Specifically, KDM5A-
mutated tumors were identified in 105 patients (3.6%) 

Fig. 1  KDM5 mutation as an independent biomarker for favorable outcomes in pan-cancer immune checkpoint blockade. (A) Pooled Kaplan–Meier sur-
vival analysis stratified by KDM5A/C mutation status in 2943 patients with 12 distinct tumor types treated with ICIs. (B) Comparison of objective response 
rate in patients with KDM5A/C mutation and patients with KDM5A/C non-mutation. (C-F) Association between KDM5A mutation and OS (C), KDM5A 
mutation and ORR (D), KDM5C mutation and OS (E), KDM5C mutation and ORR (F) in patients treated with ICIs. (G-H) Univariate (G) and multivariate (H) 
Cox analysis of the association between KDM5A/C mutation and OS in 2943 patients treated with ICIs. CI, confidence interval; CR, complete response; HR, 
hazard ratio; ICI, immune checkpoint inhibitor; ORR, objective response rate; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable 
disease
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Fig. 2 (See legend on next page.)
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and associated with robust anti-cancer activities in terms 
of OS (HR = 0.75; 95% CI, 0.58–0.97; P = 0.04; Fig. 1C) and 
ORR (49.2% vs. 26.3%; P < 0.001; Fig. 1D). KDM5C muta-
tion (n = 99) predicted similar outcomes but to a lesser 
extent in OS (HR = 0.67; 95% CI, 0.51–0.88; P = 0.02; 
Fig.  1E) and ORR (30.8% vs. 27.2%; P = 0.62; Fig.  1F). 
To assess the value of various features as potential bio-
markers for OS in immunotherapy, we performed uni-
variate (Fig. 1G) and multivariate (Fig. 1H) Cox analysis. 
KDM5 mutation was an independent positive predictor 
(HR = 0.78; 95% CI, 0.62–0.97; P = 0.03) after adjusting for 
confounding factors including age, sex, cancer type, drug 
type, tumor mutation burden (TMB), and TP53 muta-
tion status. Moreover, in patients with low TMB, KDM5 
mutation was also associated with longer OS (HR, 0.85; 
95% CI, 0.71–0.99; P = 0.04).

To investigate the underlying mechanisms between 
immunotherapy and KDM5A/C mutation, multi-omics 
information extracted from the cancer genome atlas 
(TCGA) pan-cancer cohort were explored. Totally, 429 
(3.91%) of all 10,967 enrolled patients harbored KDM5 
somatic mutations. Specifically, KDM5A mutations 
were observed in 248 patients (2.26%), KDM5C muta-
tions in 223 patients (2.03%). KDM5 mutations were 
found in most tumor types (Figure S1), and the mutant 
frequencies differed significantly among various tumors 
(P < 0.001). Totally, 504 mutations were identified, 435 
(86.31%) were missense mutations, 46 (9.13%) were 
truncating mutations, 8 (1.59%) were fusion mutations, 
8 (1.59%) was inframe mutation, and 7 (1.39%) were 
splice mutations. Further analysis revealed that OS was 
independent of KDM5A/C mutation (HR = 0.98; 95% CI, 
0.82–1.16; P = 0.77), KDM5A mutation (HR = 1.06; 95% 
CI, 0.85–1.33; P = 0.59), or KDM5C mutation (HR = 0.88; 
95% CI, 0.70–1.11; P = 0.32; Figure S2).

The key intrinsic immune response mainly referred 
to high tumor immunogenicity, activation of the anti-
gen-processing machinery, and over-expression of co-
stimulatory molecules [6]. In KDM5-mutant tumors, 
the mutation loads including TMB, silent mutation rate, 
and nonsilent mutation rate were increased significantly 
(Fig. 2A). Next, we investigated if there were any specific 

mutation patterns that were associated with the out-
comes in KDM5-mutant patients treated with ICIs [7]. 
As shown in Figure S3A, the prevalence of SBS7a (known 
etiology, ultraviolet light exposure), SBS10b (POLE muta-
tion), SBS31 (platinum chemotherapy treatment), and 
SBS86 (unknown chemotherapy treatment) were signifi-
cantly different between KDM5-mutant and KDM5-non-
mutant tumors. These SBSs were further identified as 
robust predictive biomarkers for survival in pan-cancer 
immunotherapy (Figure S3B). Indeed, the occurrence 
of SBS7a (HR = 0.69; 95% CI, 0.58–0.82; P < 0.001) and 
SBS10b (HR = 0.73; 95% CI, 0.61–0.87; P < 0.001) indicted 
favorable outcomes, while SBS31 (HR = 1.41; 95% CI, 
1.01–1.98; P = 0.01) and SBS86 (HR = 1.51; 95% CI, 1.08–
2.10; P = 0.004) were negative predictors. It was reported 
the dysfunctions of major histocompatibility complex 
(MHC) were main cause of tumor immune escape [8]. 
KDM5 mutation was associated with higher expression 
of most known MHC-related antigen-presenting mol-
ecules and co-stimulators (Fig. 2B).

The major extrinsic immune characteristics included 
the infiltration of immune cells, high diversity of B/T 
cell receptors (BCRs/TCRs), activated immunogenic-
ity of cancer cells contribute to the immune response, 
and high expression level of immune-stimulators and 
chemokines [9]. As shown in Fig. 2C, KDM5 mutations 
were associated with enrichment of immune cell infiltra-
tion based on (1) leukocyte fractions measured by DNA 
methylation arrays; (2) lymphocytes fraction estimated 
from CIBERSORT algorithm [10]; and (3) the tumor-
infiltrating lymphocyte (TIL) regional fraction evalu-
ated by RNA-sequencing information. Mutations could 
induce potential tumor-associated neoantigens, which 
might be recognized by T/B cells with specific TCRs/
BCRs [11]. Further analysis demonstrated the abun-
dances of SNV neoantigens/Indel neoantigens and the 
diversity of TCR/BCR (measured by TCR/BCR richness 
and TCR/BCR Shannon) were significantly upregulated 
in KDM5-mutant tumors (Fig. 2D). The mRNA levels of 
three immune checkpoints (PD-1, PD-L1 and CTLA-4) 
increased in KDM5-mutant tumors (Fig. 2E). Moreover, 
KDM5 mutation was associated with higher levels of 

(See figure on previous page.)
Fig. 2  Comparison of tumor immune microenvironment inKDM5-mutant and KDM5-non-mutant patients enrolled in TCGA cohort. (A) The differences 
of tumor mutation burden (TMB), silent mutation rate, and nonsilent mutation rate between KDM5-mutant and KDM5-non-mutant tumors examined by 
Wilcoxon test. Each dot represents one patient, box represents the median values and their interquartile ranges. Red, KDM5-mutant tumors; green, KDM5-
non-mutant tumors. (B) The expression differences of 16 MHC-related antigen-presenting molecules and 25 co-stimulators between KDM5-mutant and 
KDM5-non-mutant tumors represented by heatmap. Red, the median expression values are higher in KDM5-mutant tumors; blue, the median expression 
values are lower in KDM5-mutant tumors. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant. (C) The differences of leukocyte fractions, lymphocytes 
fraction and tumor-infiltrating lymphocyte fraction between KDM5-mutant and KDM5-non-mutant tumors. (D) Comparisons of the abundances of SNV/
Indel neoantigens and the diversity of TCR/BCR. (E) Expression difference of PD-1, PD-L1, and CTLA-4 in KDM5-mutant and KDM5-non-mutant tumors. (F) 
The expression differences of 48 chemokines and their receptors between KDM5-mutant and KDM5-non-mutant tumors represented by heatmap. (G) 
The expression differences of 39 immune-stimulators between KDM5-mutant and KDM5-non-mutant tumors represented by heatmap. (H) The differ-
ences of 29 immune signatures estimated by ssGSEA between KDM5-mutant and KDM5-non-mutant tumors. BCR, B cell receptor; CTLA-4, cytotoxic T-
lymphocyte-associated antigen 4; MHC, major histocompatibility complex; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 
1; SNV, single nucleotide variants; TCGA, the cancer genome atlas; TCR, T cell receptor; TIL, tumor-infiltrating lymphocyte; TMB, tumor mutation burden
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most examined chemokines and their receptors (Fig. 2F) 
and immune-stimulators (Fig.  2G). Single sample gene 
set enrichment analysis (ssGSEA) was an approach quan-
tifies 29 key immune cells, functions, and components 
[12], including activated dendritic cells, B cells, CD8 + T 
cells, dendritic cells, follicular helper T cells, inactivated 
dendritic cells, macrophages, mast cells, neutrophils, 
natural killer cells, plasmacytoid dendritic cells, T helper 
cells, Th1 cells, Th2 cells, tumor-infiltrating lymphocytes, 
regulatory T cells, APC co-inhibition, APC co-stimu-
lation, cytolytic activity, T cell co-inhibition, T cell co-
stimulation, type I IFN response, type II IFN response, 
inflammation-promoting, para-inflammation, chemo-
kine receptor, MHC class I, checkpoints, and human 
leukocyte antigens. As shown in Fig.  2H, the immune 
cell populations, immune activities, and immune-related 
components were clearly enriched in KDM5-mutant 
tumors.

Recent studies highlighted that KDM5 was associ-
ated with inflammatory disorders, autoimmune diseases, 
and tumor immune evasion through regulating cyto-
kine production, inflammatory response, and immune 
checkpoints [3, 5, 13]. Moreover, pre-clinical studies dis-
covered KDM5 could activate PI3K-AKT-S6K1 signaling 
cascade, resulting in the accumulation of tumor-associ-
ated macrophages, tumor-infiltrating dendritic cells, and 
increased T cell activation and expansion [14]. Consist 
with these investigations, our results from both extrinsic 
and intrinsic immune landscapes revealed KDM5 muta-
tion was associated with enhanced tumor immunogenic-
ity, enriched infiltration of immune cells, and improved 
immune responses.

In summary, KDM5 mutation was an independent bio-
marker for favorable outcomes in pan-cancer immune 
checkpoint blockade. Our study had implications for 
treatment decision-making and developing immunother-
apy for personalized care.
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