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Abstract 

Cellular senescence, a stable state of cell cycle arrest induced by various stressors or genomic damage, is recognized 
as a hallmark of cancer. It exerts a context-dependent dual role in cancer initiation and progression, functioning 
as a tumor suppressor and promoter. The complexity of senescence in cancer arises from its mechanistic diversity, 
potential reversibility, and heterogeneity. A key mediator of these effects is the senescence-associated secretory 
phenotype (SASP), a repertoire of bioactive molecules that influence tumor microenvironment (TME) remodeling, 
modulate cancer cell behavior, and contribute to therapeutic resistance. Given its intricate role in cancer biology, 
senescence presents both challenges and opportunities for therapeutic intervention. Strategies targeting senescence 
pathways, including senescence-inducing therapies and senolytic approaches, offer promising avenues for cancer 
treatment. This review provides a comprehensive analysis of the regulatory mechanisms governing cellular senes-
cence in tumors. We also discuss emerging strategies to modulate senescence, highlighting novel therapeutic oppor-
tunities. A deeper understanding of these processes is essential for developing precision therapies and improving 
clinical outcomes.
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Introduction
Cellular senescence is a stable state of cell cycle arrest, 
characterized by distinct morphological changes, altered 
metabolism, gene expression patterns, and a secretory 
phenotype known as the senescence-associated secre-
tory phenotype (SASP). Senescence can be triggered not 
only by intrinsic mechanisms such as the cellular division 
limit (replicative senescence), but also by extrinsic factors 
like culture conditions (premature senescence) [1]. The 
impact of cellular senescence on the human body extends 
across various physiological processes, including embry-
onic development, wound healing, tumor suppression, 
and immune regulation [2]. Furthermore, senescence 
is implicated in the development of numerous diseases, 
such as cancer, cardiovascular disease and neurodegen-
erative disorders [3–5].

In recent decades, cellular senescence has emerged as 
a focal point in cancer research. Initially, it was discov-
ered that p53-mediated senescence serves as a critical 
natural barrier against tumorigenesis, as p53 activation 
inhibits abnormal cell proliferation [6]. As research pro-
gresses, more mechanisms of tumor cell senescence have 
been discovered, including telomere shortening, oxida-
tive stress, and oncogene activation. These mechanisms 
are precisely regulated through complex and overlapping 
signaling pathways.

This article aims to review the molecular mechanisms 
of cellular senescence in tumor progression and provide 
an overview of senescence-based therapies for tumors. 
By gaining a comprehensive understanding of the dual 
role of cellular senescence in tumors, a more rational 
approach can be developed to enhance therapeutic inter-
ventions (such as promoting senescence, eliminating 
senescence, and combining both therapies).

Milestones in the history of cellular senescence 
research
In 1961, Hayflick and Moorhead discovered that 
human fibroblasts cultured in  vitro do not divide 
indefinitely but instead enter an irreversible state of 
proliferative arrest, a phenomenon now known as the 
Hayflick limit [7] (Fig.  1). Since then, scientists have 
referred to this phenomenon as cellular aging or cel-
lular senescence. It is worth noting that the terms 
"cellular aging" and "cellular senescence" are not inter-
changeable. "Aging" refers to the gradual decline in 
bodily functions as an organism ages and accumulates 
damage. In contrast, "cellular senescence" specifically 
refers to a state in which cells permanently stop divid-
ing in response to stress or damage, a process that can 
occur at any point during an organism’s life [8]. There-
fore, "cellular senescence" is a more precise term. In 

Fig. 1 Key milestones in the study of cellular senescence. This timeline highlights significant discoveries in cellular senescence research from 1961 
to present. In 1961, the Hayflick Limit was established, demonstrating that human fibroblasts have a finite capacity for cell division, marking 
the discovery of replicative senescence. By 1990, telomere shortening was identified as a key mechanism underlying cellular senescence, 
providing an explanation for the Hayflick Limit. In 1995, senescence-associated β-galactosidase (SA-β-gal) was identified as a biomarker for cellular 
senescence, alongside findings that oxidative stress can induce cellular senescence. In 1997, activation of the RAS oncogene was shown to trigger 
cellular senescence. By 2008, the mechanisms underlying oncogene-induced senescence associated tumor barrier function were summarized. 
In the same year the focus of senescence research shifted from the phenomenon and mechanisms to exploring the functions and applications, 
spurred by the concept of the senescence-associated secretory phenotype (SASP). In 2013, cellular senescence was recognized as one 
of the Hallmarks of Aging. In 2015, the first senolytic agents, dasatinib and quercetin, were identified. In 2016, The potential reversibility of cellular 
senescence was found in cancer cells. In 2019, the concept of senostatics emerged, aimed at mitigating the adverse effects of senescent cells. 
Finally, in 2022, the role of senescent cells in cancer development was integrated into the latest Hallmarks of Cancer
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1990, Calvin B. Harley demonstrated that the quan-
tity and length of telomeric DNA in human fibroblasts 
decrease with cell division, promoting cellular senes-
cence and elucidating the Hayflick limit [9]. In 1995, 
Gerardo Dimri and colleagues introduced senescence-
associated β-galactosidase (SA-β-gal), a biomarker that 
identifies senescent cells [10]. In the same year, a study 
demonstrated that oxidative stress-induced DNA 
damage significantly contributes to cellular senes-
cence [11]. In 1997, Manuel Serrano’s research indi-
cated that activation of the oncogene RAS can induce 
senescence in rodent cells [12]. Until 2008, oncogene-
induced senescence associated tumor barrier func-
tions were systematically reviewed and published 
in Science [13, 14]. In the same year, the concept of 
SASP was expanded, leading to a broader understand-
ing of cellular senescence. It was no longer viewed as 
a passive state but one where senescent cells actively 
secrete factors that influence their surrounding tissue 
environment [15].As the role of cellular senescence in 
age-related diseases was gradually uncovered, it was 
included as one of the Hallmarks of Aging in 2013 
[16]. In 2015, the team of Mayo Clinic and Scripps 
Research first found that the combination of dasatinib 
and quercetin selectively clear senescent cells [17]. A 
2016 study reported that a subset of atypical cancerous 
cells, which strongly expressed p21, exhibited prolif-
erative features after senescence, suggesting that cel-
lular senescence is reversible [18]. In 2018, by studying 
the genetic lineage tracing of the fate of senescent cells 
in vivo, it was found that some senescent cells are not 
eliminated during mouse embryonic development and 
may re-enter the cell cycle after birth, thereby confirm-
ing the reversibility of senescence during embryonic 
development [19]. In 2019, summarized the drugs that 
can inhibit SASP such as rapamycin named senostat-
ics, helping to block the adverse effects of senescent 
cells [20]. In 2022, the importance of senescent cells in 
cancer development was further recognized and incor-
porated into the latest Hallmarks of Cancer [21].

Inducing factors of cellular senescence
The occurrence of cellular senescence is driven by multi-
ple factors, which can be categorized into environmental 
and host factors based on their origin.

Environmental factors
A variety of environmental factors, including biological, 
physical, chemical, and social factors, have been impli-
cated in the acceleration of cellular senescence, possibly 
through direct cellular damage or altered cellular metab-
olism (Fig. 2).

Biological factors
Research studies have demonstrated that many patho-
gens, including bacteria, viruses, and fungi, can induce 
cellular senescence [22]. In  vitro, the accumulation of 
bacterial lipopolysaccharide (LPS) in the cytoplasm 
activates the pattern recognition receptor (PRR) cas-
pase-4, which subsequently triggers the p53-p21 and 
 p16INK4a-CDK4/6 pathways, leading to cellular senes-
cence [23]. Studies on coronavirus disease 2019 (COVID-
19) demonstrate that SARS-CoV-2 degrades the DNA 
damage-responsive kinase CHK1 in host cells, reducing 
DNA repair and upregulating  p16INK4a expression. This 
process induces cellular senescence, which in turn trig-
gers the secretion of pro-inflammatory cytokines, extra-
cellular matrix remodeling factors, and pro-coagulatory 
mediators by senescent cells. These events contribute 
to a cytokine storm, which accelerates senescence in 
neighboring cells and leads to surrounding tissue dam-
age [24–26]. Moreover, studies have shown that HIV can 
inhibit the PI3K/ATM pathway, leading to DNA dam-
age and telomere attrition, which accelerates the senes-
cence of CD4 + T cells, thus exacerbating immune system 
dysfunction in HIV infection [27]. In candidiasis, the 
upregulation of circular RNA circHIPK3 competitively 
binds miR-148b-3p, leading to increased expression of 
DNMT1/3a. This enhances methylation of the anti-aging 
gene Klotho promoter, reducing Klotho expression and 
ultimately promoting cellular senescence, which exacer-
bates the inflammatory response to infection [28].

Physical factors
Physical factors include mechanical stress, radiation, 
temperature, atmospheric pressure, electric currents, 
and noise (Fig. 2). For example, shear stress from surgi-
cal incisions can suppress the transcription of sirtuin 1 
(SIRT1) in liver sinusoidal endothelial cells (LSECs), pro-
moting the activity of proteins like p53, p21, and  p16INK4a, 
thereby accelerating LSEC senescence and impairing liver 
regeneration following partial hepatectomy [29]. Ultra-
violet radiation (UVA and UVB), combined with urban 
particulate matter (UPM), can lead to mitochondrial 
dysfunction, elevation of reactive oxygen species (ROS), 
DNA damage, and can contribute to skin aging [30]. Heat 
exposure accelerates cellular metabolism, increasing ROS 
production and disrupting DNA replication. This acti-
vates the cyclic GMP-AMP synthase (cGAS) and stimu-
lator of interferon genes (STING) pathways, promoting 
lung tissue aging and fibrosis [31].

Chemical factors
Chemical factors encompass both inorganic and organic 
compounds. Inorganic factors such as atmospheric 
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particulate matter (PM) have long been recognized as 
a threat to human health. Research has shown that PM 
exposure can induce replicative senescence (RS), which is 
associated with the downregulation of telomerase reverse 
transcriptase (TERT) and proliferating cell nuclear anti-
gen (PCNA) in human lung epithelial cells [32]. PM 
exposure also inhibits the SIRT1/PGC-1α/SIRT3 sign-
aling pathway, impairing the antioxidant system,  which 
leads to ROS accumulation and promotes cellular senes-
cence [33]. Zinc oxide (ZnO) nanoparticles (NPs), fre-
quently used in cosmetics, agriculture, biosensors, and 
drug delivery, have been shown to induce mesenchymal 
stem cell senescence through oxidative stress and DNA 
damage [34].

Cannabidiol (CBD), an organic compound used in the 
treatment of childhood epilepsy, inhibits the expres-
sion of key proteins involved in DNA replication, 
including E2F1, E2F2, cyclin D3, and CDK2, resulting 
in cell cycle arrest. Additionally, CBD suppresses key 
enzymes in DNA repair pathways, ultimately activating 
a p53-dependent senescence pathway [35]. Additionally, 
certain chemotherapy drugs have been shown to induce 
senescence (therapy-induced senescence, TIS) in tumor 
cells. For example, doxorubicin, used in treating chronic 
myeloid leukemia (CML) in the K562 cell model, upregu-
lates miR-375 and induces autophagy, leading to senes-
cence, independent of the  p16INK4a and p53 senescence 
pathways [36]. Prolonged exposure to bleomycin induces 

Fig. 2 Inducing factors of cellular senescence. Cellular senescence is driven by multiple factors, categorized as environmental and host factors 
based on their origin. Environmental factors include biological, physical, chemical, and social factors. Biological factors (1) include bacteria, viruses, 
and fungi. Physical factors (2) encompass mechanical stress, radiation, temperature, etc. Chemical factors (3) involve exposure to inorganic 
and organic compounds. Social factors (4) are reflected in the poor social relationship and the psychological stress. Host factors include telomere 
shortening (5), oxidative stress (6), oncogene activation (7) and SASP (8). Together, these factors orchestrate the complex mechanisms leading 
to cellular senescence
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oxidative stress and DNA double-strand breaks in alveo-
lar epithelial cells, inhibiting Rad51 expression, impairing 
DNA repair, and triggering senescence, which leads to 
lung toxicity [37].

Social factors
Social factors refer to the functional or prescriptive 
effects of a person’s social relationships, such as emo-
tional support, instrumental help, and information. Sys-
tematic reviews indicate that poor social relationships, 
including negative perceptions of one’s neighborhood, 
contribute to telomere shortening and accelerate physi-
cal aging [38]. Additionally, psychological stress has 
been identified as another factor that induces telomere 
shortening [39, 40]. For instance, loneliness and emo-
tional distress can increase biological aging by 1.65 years, 
exceeding the influence of factors such as biological sex, 
living area, marital status, or smoking [41]. These find-
ings underscore the importance of the biopsychosocial 
model in the etiology of cellular senescence.

Host factors
In addition to external environmental factors, cellular 
senescence is regulated by intrinsic stressors and dam-
aging elements, collectively referred to as host factors 
in this paper. Specifically, host factors include telomere 
shortening, oxidative stress, oncogene activation, and 
SASP (Fig. 2).

Telomere shortening
The discovery of telomeres dates back to 1978, when 
Elizabeth Blackburn first identified a repetitive sequence 
of nucleotides at the ends of chromosomes in the proto-
zoan Tetrahymena, marking the beginning of telomere 
research [42]. Telomeres are specialized DNA–protein 
complexes composed of hexameric TTA GGG  nucleo-
tide repeats and associated proteins in mammals, pro-
tecting chromosomal integrity [7, 43]. Telomere length 
is regulated by the activity of telomerase and shelterin 
complexes.

Telomerase is an enzyme complex consisting of TERT, 
telomerase RNA component (TERC), and associated 
cofactors. Telomerase synthesizes new DNA sequences 
to elongate telomeres, which counteracts the natural 
shortening of telomeres that occurs during cell division. 
The tumor suppressor liver kinase B1 (LKB1) enhances 
the transcription of Sp1, which inhibits TERT expression, 
leading to telomere shortening, promoting senescence in 
tumor cells, and inhibiting tumor growth [44].

The shelterin complex consists of six subunits: TRF1, 
TRF2, TIN2, Rap1, TPP1, and POT1 [45]. It binds to 
telomeric DNA associated with nucleosomes and inhib-
its the recognition of cellular DNA repair machinery. 

Studies have shown that external stimuli, such as radia-
tion, oxidative stress, or bleomycin, can induce ubiqui-
tination of telomere protection protein 1 (TPP1) by the 
E3 ubiquitin ligase FBW7, leading to TPP1 degradation 
and triggering telomere uncapping and the DNA damage 
response (DDR) [46]. Additionally, shelterin senses tel-
omere length, regulates telomerase activity, and recruits 
telomerase to the telomere, coordinating the conversion 
of newly synthesized telomeric single-stranded DNA into 
double-stranded DNA [47].

Oxidative stress
ROS are reactive oxygen-containing molecules, includ-
ing superoxide (O₂⁻), hydrogen peroxide (H₂O₂), sin-
glet oxygen (1O₂), and hydroxyl radicals (·OH) [48]. 
Major sources of ROS include mitochondria, NADPH 
oxidases (NOXs), the endoplasmic reticulum (ER), and 
peroxisomes. To maintain redox homeostasis, the intra-
cellular antioxidant system, comprising various anti-
oxidant enzymes (e.g., superoxide dismutase, catalase, 
glutathione peroxidase, and peroxiredoxin) and non-
enzymatic molecules (e.g., glutathione, flavonoids, and 
vitamin C), dynamically regulates ROS levels and repair 
oxidative damage [49].

Oxidative stress is a condition characterized by an 
imbalance between ROS production and the antioxidant 
defense system’s ability to detoxify these harmful mole-
cules or repair the resulting damage. This state can lead 
to oxidative damage to biomolecules, including proteins, 
lipids, and DNA, and has been linked to cellular senes-
cence [50]. For example, mitochondrial calcium overload 
can disrupt the electron transport chain (ETC) in cardio-
myocytes, leading to excessive ROS production and dam-
aging the DNA structure, ultimately triggering premature 
cardiac aging [51]. Furthermore, vanadate is found to 
directly oxidize and increase the efflux of glutathione 
(GSH) species, causing cellular senescence in lung fibro-
blast cells independent of ROS intermediates [52].

Oncogene activation
Oncogenic activation is a critical mechanism in tumor 
initiation and progression, driving cell growth and divi-
sion. However, studies have shown that activated RAS 
can induce senescence in fibroblasts. Subsequent studies 
have confirmed and expanded this finding, demonstrat-
ing that other activated oncogenes, such as BRAF and 
MYC, can also induce replication stress, resulting in sta-
ble growth arrest in cultured cells [53–55] (Fig. 2).

RAS is a family of small GTPases, including HRAS, 
KRAS, and NRAS, that play a crucial role in regulating 
various cellular processes, such as growth, differentia-
tion, and survival [56]. Upon activation, RAS interacts 
with several downstream effectors, most notably the 
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MAPK/ERK and PI3K-AKT pathways, leading to a cas-
cade of signaling events that promote cell proliferation 
and survival [57, 58]. In various tumors, mutations or 
overexpression of RAS are commonly associated with 
constitutive activation, resulting in uncontrolled cell 
growth and proliferation. Aberrant proliferative sign-
aling induces DNA replication stress and activates 
DDR, thereby leading to cellular senescence [59]. Fur-
thermore, RAS-related pathways can also promote the 
metabolic production of ROS in cells, leading to the 
accumulation of ROS and exacerbating DNA dam-
age [60, 61]. Other components of the RAS pathway, 
including RAF, RAC1, and MEK, may also induce cel-
lular senescence [62, 63]. For instance, baicalin has 
been demonstrated to upregulate the expression of 
decidual protein induced by progesterone, which inter-
acts with KRAS, activating the MAPK/ERK pathway 
and the  p16INK4a-CDK4/6 pathway, resulting in colon 
cancer cell senescence with an anti-cancer effect [64]. 
Similarly, BRAF, a member of the RAF kinase family, is 
commonly mutated at position V600E, triggering p53 
and  p16INK4a-dependent senescence [65].

SASP
SASP refers to the secretion of a variety of pro-
inflammatory and pro-senescence molecules, includ-
ing cytokines, chemokines, matrix metalloproteinases 
(MMPs), and growth factors, by senescent cells. These 
secreted factors not only mark the senescent state but 
can also induce senescence in neighboring cells [66]. 
Pro-inflammatory cytokines like IL-6 and IL-8 sus-
tain and amplify inflammatory responses through 
autocrine and paracrine signaling, exacerbating tis-
sue damage. This chronic inflammation, known as 
"inflammaging," can further activate DDR, driving 
cells into senescence [67]. The long-term presence of 
inflammatory mediators also leads to the inhibition of 
antigen presentation and immune cell differentiation, 
thereby impairing the ability of the immune system to 
clear senescent or damaged cells, further perpetuating 
the cycle of inflammation and senescence [68]. Moreo-
ver, this chronic inflammatory environment can foster 
tumor growth by supporting cell proliferation, angio-
genesis, and metastasis [69, 70]. Additionally, matrix-
degrading enzymes disrupt the extracellular matrix, 
impair tissue architecture, and induce DNA damage in 
surrounding cells, ultimately promoting senescence in 
neighboring cells [71, 72].

In summary, cellular senescence arises from a com-
plex interplay of various factors. Environmental fac-
tors can induce telomere shortening, disrupt redox 
balance, and activate oncogenes, thereby triggering 

the activation of senescence pathways. Simultaneously, 
host factors contribute to cellular senescence through 
gene regulation, metabolic buildup, and DNA damage. 
These factors interact synergistically, thereby shaping 
the pathways of senescence.

Mechanisms of senescence
The molecular mechanisms underlying cellular senes-
cence are complex and diverse, which can be categorized 
into two main classes: DNA damage-induced senescence 
and non-DNA damage-induced senescence. DNA dam-
age-induced senescence is primarily driven by factors 
such as telomere shortening, oxidative stress, and onco-
gene activation, while non-DNA damage mechanisms 
promote senescence by regulating key molecules includ-
ing  p16INK4a and SASP.

DNA damage‑induced cellular senescence
Cellular DNA is frequently subjected to damaging events 
from both environmental factors and intrinsic factors as 
mentioned previously. DNA damage can be broadly clas-
sified into two categories: (1) lesions affecting a single 
strand of the double helix, such as modified bases, aba-
sic sites, helix-distorting base lesions, and single-strand 
breaks (SSBs); (2) lesions involving both strands, includ-
ing interstrand crosslinks and double-strand breaks 
(DSBs) [73]. In response, cells activate DNA repair path-
ways to remove lesions. When damage cannot be effec-
tively repaired, it can lead to genomic instability and 
trigger signaling cascades, ultimately resulting in cel-
lular senescence or apoptosis [74]. This phenomenon, 
where DNA damage induces senescence, is termed DNA 
damage-induced cellular senescence (Fig. 3). This type of 
senescence can be categorized based on its origin into 
RS, telomere dysfunction-induced senescence, oxidative 
stress-induced senescence (OSIS), oncogene-induced 
senescence (OIS), and TIS. RS refers to the gradual short-
ening of telomeres in normal cells as the number of divi-
sions increases, leading to DNA damage and cell cycle 
arrest [75, 76]. Telomere dysfunction-induced senes-
cence, on the other hand, refers to the process in which 
telomere shortening and cellular senescence are trig-
gered by dysfunction of telomerase and the shelterin, 
often due to factors other than normal division [77–79]. 
OSIS results from oxidative damage that compromises 
DNA integrity and repair mechanisms [80]. OIS is trig-
gered by oncogene activation, causing replication stress, 
oxidative stress and DDR [12, 81]. TIS arises from cancer 
therapies, including chemotherapy and radiation, which 
induce DNA damage and promote senescence in tumor 
cells [82].

Severe types of DNA damage, particularly SSBs and 
DSBs, are more likely to trigger cellular senescence. 
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Following the formation of SSBs, ataxia-telangiectasia 
and Rad3-related protein (ATR) is recruited to the dam-
age site or replication stress by its partner protein ATRIP, 
which facilitates ATR’s binding to replication protein A 
(RPA)-coated single-stranded DNA. ATR is subsequently 
activated by topoisomerase-binding protein 1 (TOPBP1), 
which phosphorylates and activates CHK1 [83]. Phos-
phorylated CHK1 inhibits the phosphatase CDC25, a 
group of phosphatases including CDC25A, CDC25B, and 
CDC25C,  thereby preventing the activation of the 

CDK1-cyclin A/B complexes, obstructing the transition 
from G2 to M phase, ultimately leading to senescence 
[84, 85].

After DSBs occur, the Mre11-Rad50-Nbs1 (MRN) 
complex first reaches the damage site and uses its nucle-
ase activity to recognize the broken ends. Subsequently, 
the MRN complex interacts with ataxia-telangiectasia 
mutated kinase (ATM), promoting its dimer dissociation 
into monomers and triggering ATM autophosphoryla-
tion, thereby activating ATM [86]. ATM is a key protein 

Fig. 3 Pathways of DNA damage-induced cellular senescence. DNA damage is a critical event that can arise from various sources, including cancer 
therapies, oxidative stress, telomere shortening, and oncogene activation. In response to DNA damage, cells activate a series of signaling pathways 
collectively known as the DNA damage response (DDR). Severe types of DNA damage, particularly SSBs and DSBs, are more likely to trigger cellular 
senescence. SSBs activate the ATR-CHK1 pathway, which inhibits CDC25 and subsequently suppresses the CDK1/Cyclin A and CDK1/Cyclin B 
complexes, thereby blocking G2/M transitions and inducing cell cycle arrest. In the case of DSBs, the ATM-CHK2 axis activates p53, leading to p21 
induction, which suppresses CDK4/6-Cyclin D and CDK2-Cyclin E/A complexes, driving senescence. Phosphorylated CHK2 also inhibits CDC25, 
blocking the activation of CDK1 and CDK2, inducing cell cycle arrest. Additionally, ATM also stabilizes p53 by inhibiting MDM2, further enhancing 
p53-mediated senescence. Moreover, Sp1 activated by ATM, Ets activated by ERK as well as the accumulation of E2F activate  p16INK4a, which binds 
to CDK4/6, preventing their association with Cyclin D and further inhibiting Rb phosphorylation, then reinforcing cell cycle arrest
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kinase that detects DSBs and initiates the DDR by phos-
phorylating essential proteins, including CHK2 and 
p53. Upon DSB formation, the MRN complex (MRE11-
RAD50-NBS1) recruits ATM to the damage site and 
facilitates ATM autophosphorylation, leading to the dis-
sociation of its dimer into active monomers[87]. Acti-
vated ATM phosphorylates downstream targets such 
as CHK2 and p53 [88] (Fig.  3). Phosphorylated CHK2 
inhibits CDC25A and CDC25C, blocking the activation 
of CDK2 and CDK1, which results in cell cycle arrest [89, 
90]. Furthermore, activated CHK2 phosphorylates p53 at 
Ser20, enhancing its stability and transcriptional activity 
[91]. ATM also directly phosphorylates p53 at Ser15 and 
inhibits MDM2, preventing it from ubiquitinating p53, 
which further promotes p53 accumulation [92]. Addi-
tionally, ATM enhances p53’s transcriptional activity by 
inhibiting the SIRT1 deacetylase activity, which is regu-
lated by LARP7 [93]. p53 stimulates the expression of 
the cyclin-dependent kinase inhibitor p21, which binds 
to CDK2, inhibiting the CDK2-cyclin E/A complex while 
also blocking the CDK4/6-cyclin D complex. This dual 
inhibition prevents the cell cycle from progressing from 
the G1 to S phase, ultimately resulting in cellular senes-
cence [94]. The retinoblastoma protein (RB) is a crucial 
downstream target of cyclin-dependent kinases (CDKs) 
in cell cycle regulation. As the cell cycle progresses, RB 
is phosphorylated by the CDK2-cyclin E/A complex and 
the CDK4/6-cyclin D complex, facilitating the release of 
E2F and the transition to the S phase. When CDK com-
plexes are inhibited, hypophosphorylated RB binds to 
E2F transcription factors, blocking E2F-mediated tran-
scription of genes essential for cell cycle progression [95]. 
Additionally, ATM directly phosphorylates the transcrip-
tion factor Specificity Protein 1 (Sp1) at Ser101, enhanc-
ing its transcriptional activity. Phosphorylated Sp1 
subsequently upregulates DDR genes, including  p16INK4a, 
promoting cellular senescence [96, 97].

Non‑DNA damage‑induced cellular senescence
In addition to DNA damage, non-DNA damage signals 
significantly contribute to cellular senescence. A key 
pathway involved in non-DNA damage-induced senes-
cence is the  p16INK4a-CDK4/6 pathway. When cells 
detect excessive proliferative signals,  p16INK4a activity 
is upregulated, forming a negative feedback mechanism 
to suppress uncontrolled proliferation. This mecha-
nism is particularly important in response to oncogenic 
activation. During periods of excessive cell prolifera-
tion, hyperphosphorylated Rb releases more E2F tran-
scription factors, which activate  p16INK4a transcription. 
 p16INK4a then binds to CDK4 or CDK6, preventing their 
association with cyclin D. This inhibits the phosphoryla-
tion of Rb by the CDK4/6-cyclin D complex, ultimately 

suppressing the cell cycle [98, 99]. Additionally, tran-
scription factors from the Ets family, such as Ets1 and 
Ets2, are activated by the MAPK/ERK pathway, and bind 
to the  p16INK4a promoter, further increasing its expres-
sion [100].

SASP factors operate upstream in multiple signal-
ing pathways and have broad-reaching effects. Released 
by primary senescent cells, these factors induce senes-
cence in neighboring cells through a process known 
as Paracrine Senescence (PS) [101]. The signaling 
pathways activated by SASP factors are diverse and 
largely independent of DNA damage. For instance, the 
secreted  cytokine TGF-β binds to receptors on adja-
cent cells, activating receptor-regulated SMADs (such 
as SMAD2 and SMAD3), which form complexes with 
SMAD4 and translocate into the nucleus, enhancing the 
expression of p21 and p15, thus inducing senescence 
[102]. TGF-β also activates the PI3K/AKT pathway, 
upregulating the expression of ubiquitin-specific pro-
tease 15 (USP15), which stabilizes p53 through deubiqui-
tination [103]. Similarly, the SASP factor IL-6 can bind to 
the gp130 subunit of its receptor, activating JAK-STAT3 
pathways. This activation upregulates p21 expression and 
promotes senescence [104].

Characteristics and detection indexes of senescent 
cells
Cellular senescence is characterized by distinct morpho-
logical, molecular, and metabolic changes. Understand-
ing these features facilitates the effective identification 
of senescent cells. The following are common character-
istics of cellular senescence along with their respective 
detection indicators (Fig. 4).

Cellular morphological changes
Morphological alterations represent a key characteris-
tic of senescent cells, especially in tumor cells, and are 
associated with a diminished capacity for proliferation. 
Senescent cells typically display enlargement, flattening, 
and increased dispersion [105]. These changes correlate 
with the accumulation of cofilin-1 and the hyperphos-
phorylation of microtubule-associated protein tau in 
senescent cells.  These modifications enhance the rigid 
cytoskeletal structures formed by actin filaments, micro-
tubules, and intermediate filaments [106]. Moreover, the 
accumulation of cytoplasmic particles, such as lipofuscin, 
in senescent cells represents a significant morphological 
change that can be clearly observed in histological sec-
tions. Lipofuscin is a pigment composed of oxidatively 
damaged lipids, proteins, and other metabolites. Its 
accumulation typically occurs in senescent cells due to a 
weakened clearance mechanism, particularly the reduced 
function of lysosomes. Currently, Sudan Black B (SBB) 
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and its analogues are the most widely used methods for 
detecting lipofuscin. SBB specifically binds to oxidized 
lipids and lipoproteins in lipofuscin, forming a dark pre-
cipitate that can be directly observed under an optical 
microscope [107–111]. Beyond these cellular changes, 
nuclear morphology serves as a predictive biomarker of 
senescence, particularly through chromatin remodeling. 
These changes are primarily characterized by the forma-
tion of heterochromatin regions, alterations in histone 
modifications, and the suppression of gene transcription 
[112, 113]. SAHF are unique chromatin structures found 
in senescent cells and can be detected using immunofluo-
rescence staining techniques [114]. SAHF plays a crucial 
role in silencing genes related to cell proliferation, such 
as E2F target genes, thereby preventing further cell divi-
sion [62]. Researchers observe that cellular senescence in 
breast cancer leads to the formation of distinct SAHF foci 
and an upregulation of H3K9me3. Chromatin remod-
eling inhibits the expression of cell cycle-related genes, 

prompting cancer cells to enter an irreversible state of 
arrest [115].

Cell cycle arrest
A hallmark of senescent cells is their inability to con-
tinue dividing, often halting at the G1 or G2/M phase of 
the cell cycle. This arrest is mediated by altered cell cycle 
regulatory mechanisms that prevent senescent cells from 
entering the S phase for DNA replication (Fig. 4). As pre-
viously discussed, several cell cycle inhibitors, including 
p53, p21, and  p16INK4a, impede cell division by inhibiting 
cyclin-CDK complexes. For instance, studies show that 
inhibition of the enhancer of zeste homolog 2 (EZH2) in 
gastric cancer cells leads to increased expression of p21 
and  p16INK4a, resulting in irreversible G1 phase arrest and 
initiation of cellular senescence [116]. Techniques like 
western blotting and quantitative polymerase chain reac-
tion (qPCR) are commonly used to measure the expres-
sion levels of these inhibitors, providing insights into 

Fig. 4 Characteristics of senescent cells. Senescent cells exhibit distinct morphological, metabolic and functional changes. Main morphological 
changes (1) include cell enlargement, flattening, lipofuscin (2) and the formation of senescence-associated heterochromatin foci (SAHF) (3). 
Another defining characteristic of senescent cells is their stable cell cycle arrest (4). The lysosomal enzyme SA-β-gal becomes increasingly active 
during senescence and serves as a reliable marker for this state (5). Additionally, senescent cells exhibit mitochondrial dysfunction (6), resulting 
in the accumulation of ROS and oxidative stress. DNA damage (7), indicated by γ-H2AX foci, serves as an additional hallmark of senescent cells. 
When telomeres reach a critically short length (8), they trigger a DNA damage response that leads to cell cycle arrest. Furthermore, senescent cells 
secrete pro-inflammatory cytokines, chemokines, and proteases, collectively termed the senescence-associated secretory phenotype (SASP) (9)
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tumor proliferative activity and the onset of senescence 
[117, 118].

Cellular metabolic changes
With the occurrence of senescence, the metabolism 
of cells undergoes significant changes, which not only 
impair the cell’s own function but also affect the overall 
health of the surrounding microenvironment and tissues. 
Common metabolic characteristics of senescent cells 
include enhanced glycolysis [119], lipid accumulation 
[120], alterations in amino acid metabolism [121], and 
an imbalance between oxidative stress and antioxidant 
defense due to mitochondrial dysfunction [122]. In addi-
tion, senescent cells also have unique protein alterations, 
among which the change in β-galactosidase activity is 
an important indicator for detecting senescent cells.

β-galactosidase is a hydrolase enzyme commonly used 
as a classic biomarker for cellular senescence [123]. The 
number and size of lysosomes increase in senescent cells, 
and SA-β-gal, as a lysosomal enzyme, becomes more 
active during the senescence process. In tumor cells, 
SA-β-gal activity is frequently used to evaluate whether 
treatment strategies induce senescence in cancer cells 
[124]. The most widely used method for detecting SA-β-
gal is X-gal staining, a chemical reaction that produces a 
blue product through hydrolysis. At pH 6.0, SA-β-gal in 
the cells hydrolyzes X-gal, resulting in blue spots observ-
able under a light microscope. For more sensitive and 
quantitative detection of SA-β-gal, especially in high-
throughput screening, fluorescence-based assays have 
also been employed [125].

SASP
Once cells enter a senescent state, they secrete various 
pro-inflammatory cytokines, chemokines, proteases, 
and other molecules collectively known as the SASP 
[126]. In senescence induced by genotoxic stress, the 
p38 mitogen-activated protein kinase (p38MAPK) path-
way is activated, regulating the mRNA levels of SASP 
factors such as GM-CSF, IL-6, IL-8, GROα, MCP-2, and 
IL-1α [127]. Additionally, the cGAS-STING pathways 
also play critical roles in this process [128]. The SASP 
enables senescent cells to transmit damage signals to sur-
rounding cells or tissues, promoting a series of immune 
responses [129, 130]. However, when senescent cells are 
not promptly cleared, sustained secretion of the SASP 
creates a growth-stimulatory and immunosuppressive 
microenvironment that supports tumor development [5, 
131]. For instance, SASP factors like IL-6 and IL-8 are 
prominently expressed in senescent tumor cells, promot-
ing inflammation and angiogenesis in the microenviron-
ment [132]. Given that the expression of SASP factors is 

often elevated in senescent cells, monitoring these factors 
through techniques such as ELISA, qPCR, or western 
blotting can provide valuable insights into cellular senes-
cence. However, the SASP of senescent cells exhibits 
diverse and unstable characteristics, complicating their 
identification with a single, universal, or model-specific 
biomarker. Thus, a combination of multiple detection 
indicators is necessary for the accurate identification of 
senescent cells in tissues [133].

DNA damage
As mentioned earlier, in response to DNA damage, cells 
initiate a series of protective mechanisms, collectively 
known as the DDR. When DDR is activated but fails to 
repair the damage, the stress may drive cells to  enter 
senescence. This process is accompanied by the acti-
vation of DNA damage markers such as 53BP1 and 
γ-H2AX, which can be detected by immunofluores-
cence to identify senescent cells [134, 135]. Additionally, 
because telomere shortening can also induce DNA dam-
age and promote cellular senescence, telomere length 
is commonly used as an auxiliary marker for detecting 
senescent cells.

It is worth noting that, to date, no single biomarker has 
been proven sufficient to reliably detect cellular senes-
cence in  vivo, and a combination of multiple biomark-
ers remains necessary [109]. The biomarkers currently 
widely accepted for indicating the presence or absence of 
senescent cells are listed below (Table 1).

Reversibility of cellular senescence
Since 1961, cellular senescence has commonly been 
defined as a state in which a cell undergoes irreversible 
cell cycle arrest following prolonged division or expo-
sure to various forms of stress, with cyclin dysregulation 
playing a critical role. However, the view of senescence 
as a strictly irreversible phenomenon has been increas-
ingly questioned [170]. As noted above, the p53-p21 and 
 p16INK4a-CDK4/6 pathways are critical regulators of cel-
lular senescence, acting to inhibit the activity of CDK-
cyclin complexes and thereby arresting the cell cycle. 
Yet, in cases where p53 is ineffective or inactivated, par-
ticularly in certain tumors, the cellular response to DNA 
damage becomes less stringent [171, 172]. In such cases, 
p21 may promote genomic instability, leading to the 
accumulation of DNA damage and impairing the pro-
gression of the senescence program. As a result, tumor 
cells in a senescent state may bypass the senescence bar-
rier, producing more aggressive progeny and facilitating 
tumor progression [173]. Experimental evidence shows 
in p53-deficient lung cancer cells, p21-mediated senes-
cence can be reversed. This occurs through the upregu-
lation of replication factors, such as Cdt1 and Cdc6, 
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which suppress the expression of tumor suppressors like 
 p16INK4a and p14. These findings suggest that p21 may 
play a role in allowing tumor cells to escape senescence, 
providing a potential mechanism for cancer cell survival 
and proliferation [18].

In addition to the reversibility of individual cell senes-
cence, the potential reversibility of entire senescent cell 
populations is also a significant concern. Cellular senes-
cence is not confined to cells under severe stress; it can 
also affect neighboring cells through the secretion of 
SASP. Studies have shown that SASP plays a crucial 
role in maintaining tissue homeostasis by preventing 
the loss of entire tissue regions when cells are exposed 
to stressors that induce cell death or senescence [3]. In 
the context of tumors, senescent cells can contribute to 
a more aggressive growth phenotype in neighboring cells 
through SASP signaling [174]. The reversibility of these 
senescent cell populations is closely linked to tumor 
growth, recurrence, and drug resistance [175]. Therefore, 
the development of targeted therapies aimed at eliminat-
ing senescent cells represents a promising therapeutic 
strategy.

Heterogeneity of cellular senescence
The heterogeneity of cellular senescence implies that 
different cells exhibit distinct features, mechanisms, 
and outcomes during the process of senescence [176, 
177]. Even within the same cell type, variability exists in 
the onset, progression, manifestation, and response 
to therapy [178]. As previously mentioned, the fac-
tors inducing cellular senescence can be classified into 

environmental and host factors, and the pathways 
involved in senescence, such as ATR-CHK1, p53-p21, 
and  p16INK4a-CDK4/6, may also vary. The specific mani-
festations of heterogeneity of senescence are primarily 
reflected in the characteristics of the SASP [179]. The 
types and secretion levels of SASP factors vary between 
different cells and tissues. The factors can be influenced 
by the type of senescence and its inducing factors. Addi-
tionally, the composition of the SASP can change at dif-
ferent stages of the senescence process [170]. In the 
tumor microenvironment, this heterogeneity is particu-
larly pronounced. We will describe in detail below that 
senescent cells have a dual role in tumorigenesis and 
progression. Senescent tumor cells can secrete both pro-
inflammatory cytokines, such as IL-6, IL-8, and TNF-α, 
as well as immunosuppressive factors like IL-10, TNF-
β, and VEGF [66]. They can exert anti-tumor effects 
by inhibiting tumor growth, but may also contribute to 
tumor progression by promoting adverse outcomes such 
as metastasis and drug resistance [44, 178, 180]. There-
fore, understanding the role of senescent cells and their 
SASP factors in tumors, particularly across different 
tumor types and therapeutic contexts, is crucial for the 
development of novel and more effective therapeutic 
strategies [181].

Epigenetic regulation of cellular senescence
Epigenetic modifications to DNA and chromatin, such as 
DNA methylation, histone modifications, and chroma-
tin remodeling, are key regulators of genome architec-
ture and gene expression [182]. These modifications are 

Table 1 The main markers of senescent cells

TEM Transmission electron microscopy, IHC Immunohistochemistry, WB Western blotting, RT-qPCR Reverse transcription quantitative real-time polymerase chain 
reaction, IF Immunofluorescence, Co-IP Co-immunoprecipitation, ChIP Chromatin Immunoprecipitation, TRF Telomere restriction fragment, qPCR Quantitative 
polymerase chain reaction, TeSLA Telomere shortest length assay, STELA Single telomeric length analysis, FISH Fluorescence in situ hybridization, SBB Sudan Black B, 
ELISA Enzyme-linked immunosorbent assay, CLIAs Chemiluminescent immunoassays

Characteristic Senescence marker Detection method Ref.

The metabolic changes SA-β-gal Histochemical staining, fluorescence staining, colorimetry, TEM [136–139]

Cell cycle arrest p16INK4a IHC, flow cytometry, WB, RT-qPCR, microarray, RNA sequencing [140–143]

p21 IHC, flow cytometry, WB, RT-qPCR, microarray, RNA sequencing [140, 142–144]

p53 IHC, flow cytometry, WB, RT-qPCR, microarray, RNA sequencing [14, 145, 146]

LaminB1 IHC, flow cytometry, WB, IF, qPCR [147–149]

Rb IHC, flow cytometry, WB, IF, qPCR [150–152]

DNA damage γ-H2AX IF, WB, flow cytometry, Co-IP, ChIP [136, 140, 153]

53BP1 IF, WB, flow cytometry, Co-IP, ChIP [140, 154, 155]

Telomere length TRF assay, qPCR, TeSLA, telomere Profiling, STELA, FISH [156–159]

Morphological and metabolic 
changes

SAHF IF, confocal microscopy, ChIP [62, 160, 161]

Lipofuscin Histochemical staining, fluorescence staining, SBB [107–111]

SASP IL-6 ELISA, CLIAs, WB, flow cytometry, IHC [162–165]

IL-8 ELISA, CLIAs, WB, flow cytometry, IHC [166–168]

IL-23R ELISA, FISH [169]
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crucial in controlling cellular senescence by influencing 
the expression of senescence-associated genes and the 
secretion of SASP factors [183].

Cytosine residues in the promoter regions of genes 
can undergo methylation to form 5-methylcytosine, 
typically leading to gene silencing. This repression can 
either promote or inhibit cellular senescence, depend-
ing on the specific genes involved. For instance, Oroxylin 
A has been demonstrated to inhibit cGAS gene meth-
ylation by reducing DNMT3A activity, thereby enhanc-
ing the cGAS-STING pathway and promoting cellular 
senescence [184]. Conversely, treatment with telomerase 
activator compounds (TAC) can stimulate DNMT3B-
mediated methylation of the  p16INK4a promoter, thus 
suppressing cellular senescence [141]. Additionally, DNA 
methylation analysis methods can be used to predict the 
biological age of individual cells [185].

Recent findings have highlighted that the chemical 
modifications (e.g., acetylation, methylation, phosphoryl-
ation) of histones can alter chromatin structure, thereby 
influencing gene expression. For example, histone modi-
fications such as H3K9me3 and H3K27me3 contribute to 
the formation of the senescence-associated heterochro-
matin foci (SAHF), which silence proliferation-related 
genes and reinforce the senescent state. Additionally, the 
transcription factor ZBP-89 and histone deacetylase 3 
bind to the  p16INK4a promoter, regulating its expression 
via histone acetylation and consequently influencing cel-
lular senescence [186, 187].

Chromatin remodeling complexes, such as SWI/SNF, 
ISWI, NuRD, and INO80, can modify chromatin struc-
ture by sliding, rearranging, or removing nucleosomes 
[188]. This modification renders DNA more accessible 
to transcription factors and other regulatory proteins, 
thereby promoting gene expression, or alternatively, 
tightly packaging DNA to suppress gene expression. 
The long non-coding RNA JPX (just proximal to XIST) 
interacts with components of chromatin remodeling 
complexes, such as p65 and BRD4, enhancing the tran-
scription of SASP genes and facilitating cellular senes-
cence [189].

Together, these dynamic epigenetic mechanisms 
underscore the central role of epigenetic regulation in 
controlling the cellular senescence program.

Cellular senescence and tumor
Cancer cells are characterized by their ability to prolif-
erate indefinitely, circumvent regulatory controls, and 
evade programmed cell death, contributing to their pro-
longed survival. In contrast, senescent cells lose the abil-
ity to divide and enter a state of permanent growth arrest. 
Oncogene-induced cellular senescence is a critical bar-
rier to the malignant progression of human tumors. It 

induces DNA replication stress and activates DDR, lead-
ing to cell cycle arrest during the early stages of tumori-
genesis [81, 190]. It has been demonstrated that cellular 
senescence can limit in  vivo tumorigenesis through the 
p53 and  p16INK4a pathways [14, 191]. Additionally, senes-
cent cells are frequently observed in precancerous tumor 
tissue [192]. Therefore, cellular senescence is typically 
viewed as a detrimental factor in tumor development and 
progression. However, emerging evidence indicates that 
senescent cells can also promote malignant behavior in 
cancers.

Tumor‑associated senescence regulators
Although intracellular oncogenes can induce cellular 
senescence due to replication stress, research has shown 
that tumor cells have developed multiple mechanisms to 
inhibit this process. These adaptations allow tumor cells 
to evade senescence, enabling them to continue prolifer-
ating (Table 2).

A series of studies has demonstrated that specific sign-
aling molecules inhibit cancer cell senescence in various 
cancer models by directly modulating the p53-p21 and 
 p16INK4a pathways. Sirtuins, a family of NAD⁺-dependent 
deacetylases, play a crucial role in regulating various bio-
logical processes, including senescence, metabolism, oxi-
dative stress, and inflammation [249, 250]. Recent studies 
show that upregulation of SIRT1, induced by estrogen 
receptor α (ERα) in breast cancer, leads to the inactiva-
tion of p53 and cyclin G2, thereby inhibiting senescence 
and promoting cell survival [196]. Synaptotagmin-7 
(SYT7) is upregulated in lung cancer, which augments 
the interaction between p53 and MDM2, subsequently 
downregulating the expression levels of p53, p21, and 
 p16INK4a, thereby shutting down the senescence pro-
gram [202]. Similarly, the serine/threonine protein kinase 
NEK6 [201], the deubiquitinase PSMD7 [203], and casein 
kinase 2 (CK2) [204] all exhibit inhibition of p53 activ-
ity, thereby blocking senescence in lung cancer cells. In 
lung adenocarcinoma cells, the deletion of IKKα leads to 
decreased levels of NRF2 and NQO1, which inhibits the 
p53/p21 pathway and subsequently prevents the induc-
tion of senescence [206]. In addition to these factors, 
the GATA family, comprising GATA1, GATA2, GATA3, 
GATA4, GATA5, and GATA6, plays a crucial role as 
essential transcription factors that influence cell prolif-
eration, differentiation, and survival. Specifically, GATA4 
and GATA6 exhibit tumor-suppressing functions and are 
often downregulated in lung cancer. GATA4 facilitates 
cellular senescence by regulating microRNAs (miRNAs), 
promoting chromatin remodeling, and activating senes-
cence-associated genes. Meanwhile, GATA6 enhances 
the expression of p53 and p21, which collectively inhib-
its tumor progression [207, 208]. As a critical node in 
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Table 2 Mechanisms of cellular senescence in cancer

Cancer types Regulators Pathways Effects on cancer Ref

Breast cancer p16INK4a p16INK4a-CDK4/6 Suppression [193]

ΔNp63α ΔNp63α-HERC3-MM1-c-Myc Promotion [194]

Bmi-1 Bmi-1-p16INK4a Promotion [195]

SIRT1 p53-p21 Promotion [196]

GATA4 p53-p21 Suppression [197]

TRIM27 p53-p21 Promotion [198]

Cdc25A ATM-CHK2 Promotion [199]

Lung cancer SK2 SK2-S1P-TERT Promotion [200]

NEK6 p53-p21 Promotion [201]

SYT7 p53-p21 Promotion [202]

PSMD7 p53-p21 Promotion [203]

ZBP-89 p16INK4a-CDK4/6 Promotion [186]

CK2 p53-p21 Promotion [204]

miR-449a miR-449a-E2F3 Suppression [205]

IKKα p53-p21 Suppression [206]

GATA4 WNT7B-GSK3-HIRA-ASF1a Suppression [207]

GATA6 p53-p21 Suppression [208]

IRF8 PI3K-AKT Suppression [209]

Colorectal cancer ZEB1 p53-p21
p16INK4a-CDK4/6

Promotion [210]

FAK p53-p21 Promotion [211]

Gastric cancer FGD5-AS1 p53-p21 Promotion [212]

SIRT3 SIRT3-MnSOD-ROS Promotion [213]

PTTG1 p53-p21 Promotion [214]

SNHG6 p53-p21 Promotion [215]

miR-205-3p PI3K-AKT Suppression [216]

Liver cancer EZH2 EZH2-miR-139-5p-TOP2A Promotion [217]

AGTR1 p53-p21 Promotion [218]

SLC4A11 p53-p21 Promotion [219]

DUSP21 p53-p21 Promotion [220]

ROC1 p53-p21 Promotion [221]

HNRNP A1 p16INK4a-CDK4/6 Promotion [222]

ASPH p16INK4a-CDK4/6 Promotion [223]

TM4SF1 PI3K-AKT Promotion [224]

GCDH GCDH-PPP-ROS Suppression [225]

NOLC1 p53-p21 Suppression [226]

NLRX1 p53-p21 Suppression [227]

Let-7i-3p
miR-449b-3p
miR-624-5p
miR-885-5p

Wnt-β-catenin-c-Myc Suppression [228]

miR-138 miR-138-TERT Suppression [229]

miR-125b miR-125b-SUV39H1 Suppression [230]

Skin cancer IGF-1 DNA damage Suppression [231]

JNK2 p16INK4a-CDK4/6 Promotion [232]

OVAAL OVAAL-PTBP1-p27 Promotion [233]

14–3-3σ 14–3-3σ-CDC25 Suppression [234]

Egr1 p53-p21 Suppression [235]
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the senescence pathway,  p16INK4a is often inhibited by 
cancer-promoting factors. For example, the transcription 
factor ZBP-89 epigenetically represses  p16INK4a expres-
sion, preventing senescence in lung cancer cells [186]. 
Similarly, the enzyme aspartate β-hydroxylase (ASPH) 
is overexpressed in HCC. Inhibition of ASPH expression 
and activity leads to the inactivation of GSK3β, promot-
ing stabilization of  p16INK4a and inducing senescence 
[223]. In the context of colorectal cancer, ZEB1 promotes 
tumor growth by activating DKK1, mutant p53, Mdm2, 
and CtBP, while simultaneously inhibiting p53-mediated 
senescence and apoptosis. Moreover, ZEB1 suppresses 
senescence-related genes such as  p16INK4a and p21, con-
tributing to the aggressive nature of the tumor [210].

Under normal conditions, oxidative stress can trigger 
cellular senescence, leading to growth arrest. However, 
cancer cells boost their tolerance to oxidative damage, 
enabling them to evade this process and keep prolifer-
ating. Compared to normal gastric epithelial cells, the 
expression of SIRT3 is significantly elevated in gastric 
cancer cells. SIRT3 enhances the activity of MnSOD, 
protecting cells from oxidative damage, which confers 
strong anti-senescence properties [213]. In glioblastoma, 
VEGFR2 has been found to suppress cell progression by 
inducing OSIS through the AKT-PGC1α-TFAM mito-
chondrial biogenesis signaling cascade [239].

RS, one of the important mechanisms underlying cel-
lular senescence, is often suppressed in various cancer 
cells. Sphingosine kinase 2 (SK2) has been reported to 
produce sphingosine-1-phosphate (S1P), which binds 
to TERT, assisting in telomerase stabilization and thus 

inhibiting senescence while sustaining tumor growth 
[200]. In infant acute lymphoblastic leukemia (ALL) and 
acute myeloid leukemia (AML), fusion oncogenes such 
as MLL/AF4 and AML/MTG8 are frequently activated. 
These genes are critical for maintaining telomerase activ-
ity, and inhibiting their expression can downregulate 
TERT and induce cellular senescence [236].

Non-coding RNAs (ncRNAs) also play critical roles 
in regulating cellular senescence in cancers. Compared 
to normal liver tissues, levels of ncRNAs such as Let-
7i-3p, miR-449b-3p, miR-624-5p, miR-885-5p, miR-138, 
and miR-125b are significantly reduced in tumors. These 
miRNAs suppress cell proliferation and induce senes-
cence by modulating downstream pathways, including 
inhibition of Wnt/β-catenin signaling, downregulation 
of TERT expression, and suppression of SUV39H1 [228–
230]. miR-449a inhibits E2F3 activity, blocking the 
G1/S phase transition, and its expression is significantly 
reduced in lung cancer tissues [228].

Cancer‑promoting functions of cellular senescence
While the suppression of cellular senescence acts as a 
protective mechanism in tumorigenesis and progres-
sion, senescent cells may also exert beneficial effects 
within this context. Premature senescence in normal 
cells may increase the risk of tumorigenesis [251–253]. 
For instance, the restoration of mammary cell viability by 
the drug TPCA-1 significantly reduces the incidence of 
age-related cancers [254]. Similarly, skin cells exposed to 
ultraviolet radiation age more rapidly and demonstrate a 

Table 2 (continued)

Cancer types Regulators Pathways Effects on cancer Ref

Leukemia MLL/AF4 MLL/AF4-HOXA7-TERT Promotion [236]

AML/MTG8 AML/MTG8-TERT Promotion [236]

MYCN MYCN-EZH2-p21 Promotion [237]

miR-34c-5p p53-p21 Suppression [238]

Glioma VEGFR2 VEGFR2-AKT-PGC1α-TFAM-mitochondria-
ROS

Promotion [239]

PRKD2 p53-p21 Promotion [240]

CPEB1 p53-p21 Promotion [241]

Bcl2L12 p53-p21 Promotion [242]

FOXG1 p53-p21 Promotion [243]

miR340 p53-p21
p16INK4a-CDK4/6

Suppression [244]

Ovarian cancer S1PR1 S1PR1-PDK1-LatS1/2-YAP Promotion [245]

SIRT7 SIRT7-GATA4
SIRT7-Wnt

Promotion [246]

c-Myc c-Myc-p27 Promotion [247]

ITPKA p53-p21 Suppression [248]
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significantly higher risk of developing skin cancer. In this 
context, the accumulation of senescent cells and SASP 
may accelerate the progression of cutaneous squamous 
cell carcinoma (cSCC) [255, 256]. This increased can-
cer risk may be associated with factors such as telomere 
shortening, accumulation of genetic and epigenetic alter-
ations, and reduced DNA repair capacity [257].

An increasing body of evidence suggests that SASP 
plays an important role in mediating both pro-tumori-
genic and anti-tumorigenic effects in cancer progression. 
Components of the SASP contribute to the establishment 
of a pro-inflammatory and immunosuppressive micro-
environment that facilitates the growth of cancer cells. 
For example, senescent hepatic stellate cells contribute 
to chronic inflammation in the tumor microenviron-
ment (TME) by secreting IL-1β, thereby facilitating the 
progression from non-alcoholic steatohepatitis (NASH) 
to liver cancer [44, 258]. Similarly, senescent cells can 
secrete IL-33 to stimulate the recruitment of immuno-
suppressive cells such as Tregs, further promoting tumor 
growth through immune suppression [259]. Addition-
ally, SASP can drive tumor invasion and metastasis. 
For example, senescent glioma cells promote invasion 
through the secretion of cathepsin B [260], while senes-
cent colon cancer cells induce epithelial-mesenchymal 
transition (EMT) in surrounding cells via IL-6, MMP-3, 
fibroblast growth factor (FGF), and hepatocyte growth 
factor (HGF) [261]. Conversely, the SASP exerts antitu-
mor effects. In the early stages of liver carcinogenesis, 
IL-1β and TNF-α activate a "senescence surveillance" 
mechanism that recruits immune cells, including natural 
killer cells and macrophages, to eliminate potential can-
cerous cells [262].

Harnessing cellular senescence for cancer therapy
Cellular senescence plays a dual role in cancer devel-
opment, making it a promising target for anticancer 
therapy [263]. Several treatments—including targeted 
therapies, chemotherapy, radiotherapy, and traditional 
Chinese medicine (TCM) —aim to inhibit tumor growth 
and metastasis by inducing senescence in tumor cells. 
However, senescence in immune cells within the TME 
can weaken antitumor immunity and promote can-
cer progression, underscoring the importance of anti-
senescence strategies. This review will summarize the 
mechanisms involved in targeting cellular senescence in 
anticancer therapies.

Targeted therapy
Tumor-targeted therapy is an innovative approach to 
cancer treatment that aims to inhibit the growth and 
spread of cancer cells while minimizing damage to 

normal cells and reducing side effects by targeting spe-
cific molecular or genetic pathways. The mechanism 
of senescence inducers aligns with this concept, as they 
drive cancer cells into a state of senescence, halting their 
proliferation [264]. This positions senescence inducers as 
a novel class of tumor-targeted therapies. In the follow-
ing section, we will explore the mechanisms and efficacy 
of different senescence inducers (Table 3).

Telomere shortening is a crucial factor in cell senes-
cence. In many cancers, elevated telomerase expression 
and activity enable cancer cells to maintain telomere 
length and evade senescence. To counter this, several 
telomerase-targeted therapies aim to induce senescence 
in tumor cells by promoting telomere shortening. Atorv-
astatin, commonly used to lower cholesterol, inhibits the 
IL-6/STAT3 signaling pathway, thereby reducing TERT 
expression and inducing G0/G1 phase cell cycle arrest, 
ultimately suppressing the proliferation of hepatocellular 
carcinoma (HCC) cells [265]. Additionally, the TTA GGG  
repeat sequence at the 3’ end of telomeric DNA can form 
G-quadruplex structures through G-G pairing, which 
prevents telomerase from binding and elongating telom-
eres. G-quadruplex-stabilizing ligands, such as perylene 
and phenyl-imidazole-ethylamine-platinum (II) (PIP), 
promote the formation of these structures, inhibit telom-
erase activity, and suppress cell proliferation [269, 270]. 
Bone morphogenetic protein-7 (BMP7) inhibits TERT 
activity via the BMPRII receptor and SMAD3 pathway, 
leading to telomere shortening in breast cancer cells 
[271]. Moreover, shelterin complexes play a crucial role 
in regulating telomere length. For example, the aflatoxin 
B derivative FKB04 induces senescence in liver cancer 
cells by inhibiting the expression of telomeric repeat-
binding factor 2 (TRF2), disrupting the T-loop structure, 
shortening telomeres, and ultimately leading to cellular 
senescence [266].

ROS accumulation is a key trigger of cellular senes-
cence and is often targeted by senescence inducers. Res-
veratrol enhances ROS generation through the SIRT1/
p38MAPK and NO/dLC1 pathways by increasing the 
expression of tumor suppressor gene DLC1, trigger-
ing ER stress, and depleting intracellular antioxidants. 
Additionally, it increases the expression of DNA double-
strand break marker γ-H2AX and decreases the levels of 
DNA repair proteins p-BRCA1 and RAD51, ultimately 
promoting SA-β-gal activity and the expression of senes-
cence markers p53, p21, and LaminB [272–274]. Some 
studies show that leukemia can be effectively combated 
by inducing tumor cells into senescence. Imidazo[1,2-a]
pyridines (IPs) enhance lipid peroxidation and reduce 
GSH levels [277], while curcumin analog pentachloro-
propane-1 (PGV-1) competes with GSH for binding to 
GST-P1, inhibiting ROS scavenger enzyme activity [278]. 
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Anthraquinone lactone AS1041 decreases total thiols and 
disrupts matrix metalloproteases [275], all of which ele-
vate ROS levels and induce senescence in leukemia cells.

In addition to regulating telomere length and ROS 
levels, targeting key pathways involved in cellular senes-
cence, such as the p53-p21 axis and  p16INK4a-CDK4/6 
axis, has proven to be an effective therapeutic strategy. 
DNA methyltransferase inhibitors (DNMTis), including 
5-azacytidine, 5-aza-2’-deoxycytidine, pseudolaric acid 
B (PAB), β-Asarone, and the platinum-zoledronate com-
plex [Pt(en)]2ZL, as well as combinations like cucurbi-
tacin B with Withanone and Aurora kinase A (AURKA) 
inhibitors with MDM2 antagonists, have been shown 
to activate the p53 pathway, induce cellular senescence, 
and inhibit cancer cell growth, tumor progression, and 
metastasis [280–285]. It is noteworthy that some tumors, 
such as PD-L1-positive senescent tumor cells, can resist 
immune clearance and relapse after senescence. However, 

berberine derivative B68 has been shown to induce 
p53-dependent cellular senescence, disrupt the immu-
nosuppressive PD-1/PD-L1 interaction, and facilitate 
the rapid clearance of senescent tumor cells [286]. Some 
drugs can induce cellular senescence by directly activat-
ing p21, independent of the p53 pathway. For example, 
guanylate cyclase inhibitor LY83583 [287], sodium val-
proate (a known HDAC inhibitor) [288], Argentatin B 
[289], 1,25(OH)2D3 [290], adapalene [291] and carvacrol 
[292] all enhance p21 expression, inhibit CDK and cyc-
lins activity, and induce cellular senescence. The front-
line treatment for chronic myeloid leukemia (CML), 
imatinib, not only induces apoptosis and autophagy but 
also increases p21 and p27 expression, as well as the pop-
ulation of SA-β-gal-positive cells [293]. Selective CDK4/6 
inhibitors have also been proven to be effective senes-
cence inducers [294]. For instance, palbociclib inhib-
its CDK4/6 activity, while also suppressing proteasome 

Table 3 Overview of compounds for targeting cellular senescence in cancer

Compounds Targeted strategies Cancer types Ref

Atorvastatin Telomere Hepatocellular carcinoma [265]

FKB04 Telomere Liver cancer [266]

6-paradol and 6-shogaol Telomere Lung cancer [267]

AZT Telomere Breast cancer [268]

Perylene Telomere Lung cancer [269]

PIP Telomere Lung cancer [270]

BMP7 Telomere Breast cancer [271]

Resveratrol ROS Breast cancer, liver cancer and lung cancer [272–274]

AS1041 ROS Leukemia [275]

RGS ROS Colorectal cancer [276]

IPs ROS Leukemia [277]

PGV-1 ROS Leukemia [278]

AKI603 ROS Leukemia [279]

5-azacytidine, 5-aza-2’-deoxycytidine p53-p21 Hepatoma, colon, renal, and lung cancer [280]

PAB p53-p21 Lung cancer [281]

β-Asarone p53-p21 Colorectal cancer [282]

[ Pt (en)]2ZL p53-p21 Gastric cancer [283]

Cucurbitacin-b + Withanone p53-p21 Lung cancer [284]

AURKA + MDM 2 antagonists p53-p21 Melanoma [285]

Berberine derivative B68 p53-p21 Colorectal cancer [286]

LY83583 p21-CDK/Cyclin Malignant melanoma and breast cancer [287]

Sodium valproate p21-CDK/Cyclin Liver cancer [288]

Argentatin B p21-CDK/Cyclin Colorectal and prostate cancer [289]

1,25(OH)2D3 p21-CDK/Cyclin Liver cancer [290]

Adapalene p21-CDK/Cyclin Prostatic cancer [291]

Carvacrol p21-CDK/Cyclin Lung cancer [292]

Imatinib p21-CDK/Cyclin Leukemia [293]

Abemaciclib p16INK4a-CDK4/6 Liposarcoma [294]

Palbociclib p16INK4a-CDK4/6 Gastric cancer [295]

AVN A p53-p21 Colorectal cancer [296]
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inhibitor EMC29, leading to proteasome activation and 
preventing Rb phosphorylation and E2F release, blocking 
the transition of cancer cells from the G1 to the S phase 
[295, 297]. It is worth noting that the senescence induced 
by CDK4/6 inhibitors in tumor cells is partially revers-
ible, which may increase the risk of tumor recurrence, 
warranting further investigation [298].

miRNAs are small, non-coding RNA molecules that 
play a crucial role in regulating senescence-related gene 
expression by binding to messenger RNA (mRNA), 
thereby preventing its translation or promoting its deg-
radation [299]. Some miRNAs mentioned earlier (such 
as miR-449b-3p, miR-624-5p, and miR-138) have been 
shown to promote cellular senescence [228]. How-
ever, their expression is often suppressed in tumor cells. 
Enhancing the expression of these miRNAs is considered 
a therapeutic approach to induce senescence. Avenan-
thramide A (AVN A) increases miR-129-3p expression, 
inhibits the expression of the ubiquitin ligase Pirh2, and 
upregulates p53 and its downstream target p21, thereby 
inducing senescence and inhibiting colon cancer growth 
[296].

Gene therapy plays a significant role in cancer treat-
ment by manipulating genetic pathways related to cel-
lular senescence to inhibit tumor growth. For instance, 
infection of A549 lung cancer cells with a recombinant 
adenovirus carrying the  p16INK4a gene leads to high-
level expression of the  p16INK4a protein, inhibition of 
telomerase activity, increased SA-β-gal expression, and 
significant suppression of cancer cell growth [300]. Fur-
thermore, using CRISPR interference and programmable 
base editing to correct the −124C > T mutation in the 
TERT promoter effectively suppresses abnormal TERT 
overexpression, thereby inhibiting the growth of gliomas 
harboring this mutation [301]. Additionally, knocking 
down the gastrin-releasing peptide receptor elevates p53, 
p21, and  p16INK4a levels, activates the epidermal growth 
factor receptor (EGFR), and reduces p38MAPK levels, 
leading to increased cell size and cell cycle dynamics con-
sistent with cellular senescence [302].

Chemotherapy and radiotherapy
As early as 2003, studies demonstrated that chemother-
apy can induce premature senescence in tumor cells, 
thereby inhibiting tumor growth [303]. For example, 
doxorubicin has been shown to upregulate the expres-
sion of the growth factor BMP4, which subsequently 
activates the SMAD pathway to increase the expression 
of  p16INK4a and p21, inducing premature senescence 
in lung cancer cells [304]. Moreover, combining senes-
cence inducers with chemotherapeutic agents can reduce 
chemotherapy resistance and increase tumor cell sen-
sitivity to treatment. In colon cancer models, citrate, by 

promoting excessive lipid biosynthesis in tumor cells and 
disrupting lipid metabolism, may initiate ATM-mediated 
senescence pathways, thereby enhancing the inhibitory 
effect of standard chemotherapy on tumor growth [305]. 
Norcantharidin (NCTD) has been found to enhance 
chemotherapy in triple-negative breast cancer (TNBC) 
by inducing cell senescence and cell cycle arrest through 
the inhibition of phosphorylated Akt and ERK1/2, as well 
as the upregulation of p21 and  p16INK4a [306]. Inhibi-
tors of DNA-dependent protein kinase (DNA-PK), such 
as the novel inhibitor M3814, enhance chemotherapy’s 
antitumor effects by reducing DNA repair and inducing a 
p53-dependent senescence pathway [307].

However, other studies suggest that senescence of 
tumor cells can contribute to enhance the resistance of 
tumor tissues to chemotherapy. In colon cancer, senes-
cent cells enhance tumor resistance by upregulating 
INHBA expression, which negatively regulates the Hippo 
signaling pathway and inhibits apoptosis [308]. In mela-
noma, cisplatin has shown limited efficacy, possibly due 
to senescent melanoma cells activating the ERK1/2-RSK1 
pathway through SASP factors, promoting the prolifera-
tion of non-senescent cells [309]. In addition, chemother-
apy can also lead to immune cell senescence and promote 
tumor recurrence [310].

As previously mentioned, ionizing radiation is a sig-
nificant inducer of cellular senescence. Therefore, radio-
therapy can induce senescence in tumor cells. Ionizing 
radiation can upregulate the expression of the E3 ligase 
TRIM22 in hepatocellular carcinoma cells, triggering 
senescence by degrading the AKT phosphatase PHLPP2 
and activating the AKT-p53-p21 pathway [311]. Senes-
cence inducers have been demonstrated to enhance the 
antitumor efficacy of radiotherapy. PARP inhibitors, 
for instance, can further inhibit DSB repair, promot-
ing senescence in breast cancer cells and enhancing the 
effects of radiotherapy [312]. Lipoic acid has been shown 
to synergize with radiation to induce death and senes-
cence in breast cancer cells by increasing p53 expression, 
activating p38MAPK and NF-κB, and causing G2/M 
cell cycle arrest [313]. BIBR1532 inhibits telomerase 
and increases radiation-induced telomere dysfunction, 
leading to chromosomal instability and inhibition of the 
ATM/CHK1 pathway, impairing DNA damage repair and 
ultimately increasing radiosensitivity in non-small cell 
lung cancer (NSCLC) [314].

Traditional Chinese medicine
In recent years, as research into the pharmacological 
effects of TCM has deepened, an increasing number of 
TCM components and derivatives have been found to 
exhibit antitumor activity, demonstrating great potential 
in cancer prevention, treatment, and adjuvant therapy 
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[315]. Many TCM compounds and their derivatives, such 
as andrographolide [316], artemisinin [317], oridonin 
[318, 319], and curcumin [320], can induce cellular senes-
cence in cancer cells by enhancing the p53/p21 signaling 
pathway and SA-β-gal activity, making them promising 
candidates for antitumor therapy. The alkaloid matrine, 
derived from the plant Sophora flavescens, and Ligus-
trum lucidum fruit extract (LLFE) induce G0/G1 phase 
arrest and senescence in liver cancer cells by upregulating 
p21 and downregulating Rb phosphorylation [321, 322]. 
Additionally, certain compounds extracted from tradi-
tional Chinese medicinal herbs can induce senescence 
through oxidative stress. For example, curcumin analog 
CCA-1.1 and pentachloropropenone PGV-1 selectively 
induce G2/M phase arrest and OSIS in colorectal cancer 
cells [323], while Platycodin D2 (PD2), extracted from 
Platycodon, promotes mitophagy in liver cancer cells via 
NIX, leading to ROS production and activation of the 
p21-CDK2 pathway to induce senescence [324]. Interest-
ingly, curcumin’s anti-cellular senescence effect is now 
widely accepted [325]. Additionally, it has been demon-
strated that oridonin suppresses the senescence of nor-
mal fibroblasts by inhibiting AKT signaling [326]. These 
findings suggest that the dual role of these compounds in 
regulating senescence may vary depending on the dose 
and the specific cell type involved.

Tumor interventions related to the TME
The TME refers to the surrounding environment in which 
tumor cells reside, including immune cells, fibroblasts, 
the vascular system, and the extracellular matrix. In 
recent years, many studies have revealed that the senes-
cent microenvironment plays a significant role in tumo-
rigenesis, progression, and metastasis, providing new 
insights and therapeutic targets for cancer treatment.

Current research indicates that immune cell senes-
cence within the TME plays a detrimental role in tumor 
development and progression by facilitating immune 
suppression and evasion [327]. In certain tumors, senes-
cent T cells (CD57, lacking CD28) accumulate in the 
TME, resulting in an impaired immune response [328, 
329]. This is partly due to dysregulated lipid metabolism 
and altered phospholipase A2 IVa activity, which result in 
lipid droplet accumulation in T cells, further compromis-
ing their immune function [330]. Senescent macrophages 
enhance anaerobic glycolysis and promote tumorigenesis 
by secreting various SASP factors in a paracrine man-
ner, such as Bmp2, Ccl2, Ccl7, Ccl8, Ccl24, Cxcl13, and 
Il10. Notably, the chemokines CCL7 and CCL24 are par-
ticularly involved in enhancing cancer cell invasion and 
metastasis [331–333]. In response to the adverse effects 
of immune cell senescence, several studies have proposed 
new therapeutic targets aimed at mitigating immune 

dysfunction and enhancing antitumor immunity. Pre-
venting tumor-specific T cell senescence by blocking 
ATM and MAPK signaling, in combination with anti-
PD-L1 checkpoint inhibitors, can synergistically enhance 
antitumor immunity and improve the efficacy of immu-
notherapy [328]. Moreover, autologous NK cell infusion 
has been shown to significantly eliminate senescent T 
cells and suppress tumor progression [334]. Inhibit-
ing the release of SASP factors from senescent cells can 
effectively alleviate immunosenescence and enhance 
tumor resistance [335, 336].

Cancer-associated fibroblasts (CAFs), which are abun-
dant in the TME, play a key role in tumor progression. 
Substantial evidence suggests that senescent CAFs can 
enhance treatment resistance in tumor cells. Studies have 
found that radiotherapy induces CAF senescence, which 
promotes tumor growth through the secretion of insulin-
like growth factor-1 [337]. Additionally, senescent CAFs 
promote the proliferation of NSCLC cells and enhance 
their radioresistance via the JAK/STAT pathway [338]. 
One study observed that pretreatment with quercetin 
effectively reduced the number of doxorubicin-induced 
senescent fibroblasts and SASP production, thus reduc-
ing their pro-tumorigenic effects on osteosarcoma cells 
[339].

The role of endothelial cell senescence in the TME is 
primarily related tumor growth, metastasis and spread. 
Senescent endothelial cells can loosen intercellular 
junctions, facilitating the spread of tumor cells through 
the endothelial barrier [340], while also secreting IL-6, 
which promotes chemotherapy resistance [341]. Interest-
ingly, the tumor suppressor miR-34a induces endothelial 
progenitor cell (EPC) senescence by inhibiting SIRT1, 
thereby reducing EPC-mediated angiogenesis and ulti-
mately suppressing tumor growth [342]. Senescent 
endothelial cells can also promote immune-mediated 
senescence surveillance through SASP secretion and 
NF-κB regulation, potentially preventing tumor forma-
tion [343].

Senolytics and senostatics
Notably, therapeutic strategies as mentioned above that 
induce tumor cells senescence may not always be ideal, as 
senescent cells can promote tumor progression, metas-
tasis, and drug resistance through the secretion of SASP 
factors and the reversible nature of senescence, especially 
if they persist for a prolonged period. As a result, inhib-
iting or eliminating senescent cells is a promising com-
plementary approach to overcoming these challenges, 
potentially improving therapeutic outcomes and reduc-
ing adverse effects associated with prolonged senescence 
[344].
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Senolytics are a class of compounds designed to 
selectively eliminate senescent cells. These agents 
reduce the negative effects of senescent cells by spe-
cifically targeting BCL-2 family proteins and the p53 
pathway to induce programmed cell death in senescent 
cells [345, 346]. Representative senolytic drugs, such 
as dasatinib [347] and quercetin [348], exhibit stronger 
activity in eliminating senescent cells when used in 
combination [17]. Additionally, when combined with 
cisplatin and other chemotherapeutic agents, seno-
lytics can potentiate the anti-tumor effects of these 
treatments [349]. It is important to note that senolytic 
therapies may have certain toxic side effects under 
specific conditions, including gastrointestinal toxicity, 
thrombocytopenia, and the potential to promote tum-
origenesis [350–352]. These risks highlight the need 
for further investigation to better understand their 
safety profile.

Senostatics are another class of drugs designed to 
target senescent cells. Unlike senolytics, which directly 
eliminate senescent cells, senostatics inhibit the activ-
ity of senescent cells or their SASP [353]. Senostatics 
can be classified into three categories based on their 
mechanisms: inhibitors of SASP, blocking antibod-
ies, and inducers of SASP reprogramming [354]. SASP 
inhibitors, which are numerous, reduce the secretion of 
IL-6, IL-8, and TGF-β by inhibiting NF-κB and mTOR, 
thereby alleviating their negative impact on surround-
ing tissues and the tumor microenvironment [355, 356]. 
Blocking antibodies, including various neutralizing 
antibodies against SASP components or their recep-
tors, such as those targeting IL-11, have been shown to 
reduce cellular senescence and improve organ function 
[357]. Inducers of SASP reprogramming can convert 
pro-inflammatory SASP into a pro-immune phenotype, 
thereby enhancing antitumor effects. For example, a 
combination of palbociclib (a CDK4/6 inhibitor) and 
trametinib (a MEK inhibitor) promotes the secretion of 
TNF-α and ICAM-1 by senescent cells, which in turn 
stimulates the NK cell immune response [358].

Despite their promising potential, senotherapies face 
several challenges, including enhancing specificity, 
mitigating long-term adverse effects, and overcoming 
senescent cell heterogeneity [354, 359]. To address these 
challenges more effectively, emerging evidence suggests 
that combining senescence inducers, senolytics, and 
senostatics may enhance therapeutic efficacy compared 
to using them individually [360]. Recent findings show 
that ferroptosis inducers or Fe (II)-activated prodrugs 
can selectively trigger apoptosis in both primary and 
paracrine senescent cells, reducing cytotoxicity in an 
Fe (II)-dependent manner  [361]. Furthermore, various 
studies have explored ways to improve the specificity 

and reduce the side effects of senolytics and senostat-
ics by developing specific delivery systems [362, 363]. 
For instance, the high lysosomal β-galactosidase activ-
ity in senescent cells has been exploited to design deliv-
ery systems using galactooligosaccharide-coated drugs 
[364–366]; the lipofuscin accumulation in senescent 
cells has been utilized to develop micelle nanocarriers 
that bind to lipofuscin [367], allowing for more precise 
targeting of senescent tumor cells and enhancing the 
anti-tumor effect.

Summary and outlook
In conclusion, cellular senescence plays a dual role in 
tumor development and progression, functioning as both 
a tumor suppressor and promoter, with its effects shaped 
by the heterogeneity of senescence. This complexity 
necessitates a deeper understanding of the mechanisms 
underlying senescence and its context-dependent effects 
within the TME. Future research should focus on eluci-
dating these intricate pathways, particularly the specific 
contributions of SASP components in various tumor 
contexts. Developing targeted therapies that modulate 
SASP could enhance efficacy while minimizing off-target 
effects, especially in metastatic cancers [368]. Addition-
ally, since senescent tumor cells may impact the efficacy 
of senescence-inducing therapies due to their reversibil-
ity, it is crucial to understand the mechanisms underlying 
this process. At the same time, optimizing combinations 
of senescence-inducing therapeutic strategies with seno-
lytics and senostatics is crucial for achieving an opti-
mal therapeutic balance that maximizes benefits while 
minimizing side effects [369]. Finally, identifying reliable 
senescence biomarkers to predict treatment response 
and monitor therapeutic efficacy could facilitate more 
precise and personalized treatment approaches. Address-
ing these challenges could significantly advance the clini-
cal impact of senescence-targeted therapies in oncology.
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