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Abstract 

Blast phase chronic myeloid leukemia (BP-CML) poses significant clinical challenges due to its drug resistance, result-
ing from BCR::ABL1-dependent mutations and BCR::ABL1-independent pathways. Previously, we reported that FLT3 
pathway is activated in ~ 50% of BP-CML cases, indicating a potential avenue for therapeutic intervention via dual 
inhibition of BCR::ABL1 and FLT3. Here, we aimed to evaluate the efficacy of KF1601, a dual inhibitor of BCR::ABL1 
and FLT3, in overcoming drug resistance in BP-CML while also comparing its thrombo-inflammatory responses 
with those of ponatinib, known to have severe cardiovascular adverse events in human. Our findings revealed 
that KF1601 effectively inhibited of BCR::ABL1 signaling pathway, even in the presence of the T315I mutation. KF1601 
achieved complete tumor regression in K562 xenograft mouse models, and prolonged survival significantly in ortho-
topic mouse models. Furthermore, KF1601 effectively inhibited the FLT3 signaling pathway in imatinib-resistant K562 
cells expressing FLT3 and TAZ, suppressing cell proliferation through dual inhibition of BCR::ABL1 and FLT3. These 
findings were corroborated using drug-resistant BP-CML cells from patients. In assessing thrombo-inflammatory 
responses using a murine thrombosis model, ponatinib induced severe responses, leading to carotid artery occlusion 
and extensive vessel wall damage. In contrast, in mice treated with KF1601, carotid arteries remained unoccluded, 
with vessel walls preserved intact. In summary, KF1601 demonstrated promising preclinical efficacy in overcom-
ing resistance mechanisms, including the BCR::ABL1T315I mutation, while also addressing FLT3 signaling implicated 
in BP-CML progression. Unlike existing therapies such as ponatinib, KF1601 offers a favorable safety profile, potentially 
minimizing the risk of life-threatening adverse effects.
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Introduction
Chronic myeloid leukemia (CML) is a myeloprolifera-
tive neoplasm, characterized by the fusion of the ABL1 
gene on chromosome 9 with the BCR gene on chromo-
some 22 [1]. This fusion results in the constitutive acti-
vation of the BCR::ABL1 tyrosine kinase, which drives 
aberrant cellular proliferation through downstream 
signaling pathways including RAS, MYC and STAT [2, 
3]. Imatinib, the first generation tyrosine kinase inhibi-
tor (TKI) targeting BCR::ABL1, has revolutionized 
CML treatment by significantly improving patients’ 
outcome [4–10]. Nevertheless, there are two clinically 
important unmet needs.

Firstly, resistance to imatinib may arise from muta-
tions in the BCR::ABL1 protein, hindering the bind-
ing of imatinib to its ATP-binding site [11, 12]. While 
second generation TKIs such as nilotinib, radotinib, 
dasatinib, and bosutinib have been developed to over-
come imatinib resistance, certain mutations, such as 
BCR::ABL1T315I, remain refractory to these therapies 
[12–17]. Ponatinib, a third-generation TKI, is efficacious 
against BCR::ABL1T315I, but is associated with life-threat-
ening side effects such as arterial obstruction (33%), 
thromboembolism (6%), and heart failure (9%) [18–25].

Secondly, blast phase (BP) CML presents a signifi-
cant clinical challenge due to its resistance to TKIs and 
high relapse rates. BP-CML is an advanced stage of the 
disease, marked by the proliferation of immature, undif-
ferentiated blast-like cells in the bone marrow and 
peripheral blood. While the advent of TKIs has reduced 
the progression rate to BP-CML from 5–20% to 1–5%, 
prognosis remains poor, with most patients succumbing 
within a year of onset [26]. For instance, in a BP-CML 
cohort treated with ponatinib, only 23% achieved a major 
cytological response within six months, and the median 
overall survival was just seven months, underscoring the 
limited efficacy of current therapies [18].

The progression to BP-CML involves multiple molecu-
lar mechanisms such as β-catenin and C-MYC upreg-
ulation, oxidative DNA damage leading to genomic 
instability, mutations such as T315I, and epigenetic 
reprogramming via the polycomb repressive complex 
[27]. Recently, we reported that FLT3-TAZ signaling is 
activated in approximately 50% of BP-CML cases confer-
ring TKI resistance [28]. In acute myeloid leukemia, it 
has been reported that FLT3 increases β-catenin activ-
ity, contributing to self-renewal and leukemogenesis, 
and that FLT3-mediated STAT5 activation upregulates 
C-MYC, supporting malignant progression [29, 30]. 
Given that β-catenin and C-MYC are key players in BP-
CML progression, FLT3 activation may contribute to 
disease advancement through these pathways, further 
supporting the rationale for targeting BCR::ABL1 and 

FLT3 together provides novel therapeutic opportunities 
for FLT3+ BP-CML patients.

In this study, we aimed to evaluate the efficacy of 
KF1601, a dual inhibitor of BCR::ABL1 and FLT3, in 
overcoming TKI resistance in BP-CML. Specifically, we 
investigated KF1601’s efficacy in inhibiting drug-resistant 
mutant forms of BCR::ABL1, including BCR::ABL1T315I, 
and its capacity to suppress FLT3 signaling and prolif-
eration in drug-resistant BP-CML cells, expressing FLT3 
and harboring BCR::ABL1. Additionally, we aimed to 
compare thrombo-inflammatory responses, associated 
with severe cardiovascular adverse events in human, of 
KF1601 and ponatinib.

Results
KF1601 forms stable complexes with both native 
BCR::ABL1 and BCR::ABL1T315I

KF1601 forms four hydrogen bonds with native BCR-
ABL1 and three hydrogen bonds with BCR::ABL1T315I. 
Specifically, the pyrazole ring consistently forms a hydro-
gen bond with the hinge site residue M318, while the 
amide nitrogen of KF1601 interacts with the E286 side 
chain. Moreover, in the native BCR:ABL1, the nitrile moi-
ety of KF1601 forms a hydrogen bond with R386, whereas 
in the BCR::ABL1T315I, the nitrogen atom of the indole 
ring forms a hydrogen bond with S385. Both interactions 
contribute to enhancing KF1601’s stabilization within the 
ATP-binding pocket. While a hydrogen bond is formed 
between the nitrogen of the pyridine ring and the T315 
side chain of native BCR::ABL1, this bond is absent in 
BCR::ABL1T315I. The computational binding energy cal-
culations revealed that BCR::ABL1T315I exhibits a rela-
tively higher binding energy (native BCR::ABL1 = −83.15 
kcal/mole, BCR::ABL1T315I = −62.43 kcal/mole). How-
ever, it is expected that KF1601’s robust binding to 
BCR::ABL1T315I with three hydrogen bonds will suffice 
for effective inhibition. In summary, molecular docking 
simulations demonstrated that KF1601 forms stable com-
plexes with both native BCR::ABL1 and BCR::ABL1T315I 
(Fig. 1A and B).

KF1601 inhibited the downstream signaling pathway 
of BCR::ABL1
We investigated the effects of KF1601 on the downstream 
signaling pathway of BCR::ABL1 in three different types 
of cells: 1) parental Ba/F3 cells; 2) Ba/F3 cells with native 
BCR::ABL1; and 3) Ba/F3 cells with BCR::ABL1T315I. 
Ponatinib served as a positive control for BCR::ABL1T315I, 
and nilotinib as a negative control [13, 24, 25]. KF1601 
downregulated the phosphorylation of CRKL, an adap-
tor and the major substrate of BCR::ABL1 as well as 
that of STAT5 and ERK, critical mediators of onco-
genic transcriptional events in CML, in Ba/F3 cells with 
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Fig. 1  KF1601 forms stable complexes with BCR::ABL1 and BCR::ABL1T315I, inhibiting downstream signaling pathways and demonstrating potent 
in vivo efficacy. A KF1601 forms four hydrogen bonds with native BCR::ABL1. B KF1601 forms three hydrogen bonds with BCR::ABL1T315I. The 
magenta dashed lines represent hydrogen bond interactions. C Immunoblotting results shown in three panels: the left panel displays results 
from Ba/F3 parental cells, the middle panel displays results from Ba/F3 cells expressing native BCR::ABL1, and the right panel displays results 
from Ba/F3 cells expressing BCR::ABL1T315I. Ponatinib served as a positive control for BCR::ABL1T315I, and nilotinib as a negative control. KF1601 
demonstrated dose-dependent inhibition of the downstream signaling pathway of BCR::ABL1 in both Ba/F3 cells expressing native BCR::ABL1 
and Ba/F3 cells expressing BCR::ABL1T315I. D Dose–response curves for KF1601 in Ba/F3 cell line and IC50 values of KF1601 and imatinib. Ba/
F3: Ba/F3 parental cells; Ba/F3BCR::ABL1: Ba/F3 cells expressing native BCR::ABL1; Ba/F3T315I: Ba/F3 cells expressing BCR::ABL1T315I; K562, TCCS, 
KOPM28: patient-derived CML cell lines with native BCR::ABL1; TCCST315I and KOPM28T315I: sublines of TCCS and KOPM28 with BCR::ABL1T315I. 
E Tumor growth inhibition in a CML xenograft mouse model using K562 human CML cells. Following cessation of KF1601 treatment, complete 
tumor regression was maintained in 3 out of 10 mice treated with 5 mg/kg of KF1601, and in all mice treated with either 10 mg/kg or 30 mg/
kg of KF1601 until the end of the study. Each KF1601 treatment group was compared to the vehicle group based on the treatment day using 
GraphPad prism 10, with statistical significance (p < 0.0001). F Reduction in tumor burden in an orthotopic CML mouse model mice. The tumor 
burden in KF1601-treated groups was reduced by over 99% compared to that in the vehicle-treated group. **** p < 0.0001. G Post-treatment 
survival of orthotopic CML mice. In the KF1601-treated groups, the median survival time increased to 31–35 days, compared to 21 days 
in the vehicle-treated group. Curves were compared by Log-rank Mantel-Cox test (KF1601 25 mg/kg p < 0.001, Ponatinib 25 mg/kg, KF1601 50 mg/
kg and KF1601 100 mg/kg p < 0.0001)
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either native BCR::ABL1 or BCR::ABL1T315I in a dosage-
dependent manner. Nilotinib, a second-generation TKI, 
inhibited the downstream signaling pathway of native 
BCR::ABL1, but not that of BCR::ABL1T315I (Fig. 1C).

Since CRKL phosphorylation is directly associated with 
the kinase activity of BCR::ABL1, we further investigated 
the effect of KF1601 on CRKL phosphorylation in four 
different cell lines: Ba/F3 cells expressing BCR::ABL1T315I, 
and patient-derived CML cell lines including TCCS, 
TCCST315I and K562. Quantitative analysis of CRKL 
phosphorylation demonstrated that KF1601 is a potent 
inhibitor of both native BCR::ABL1 and BCR::ABL1T315I 
(Fig. S1).

KF1601 inhibited the kinase activity of native and mutant 
forms of BCR::ABL1
We quantitatively assessed the inhibitory effect of 
KF1601 on the kinase activity of native and mutant forms 
of BCR::ABL1 through in vitro biochemical kinase assay. 
KF1601 inhibited the kinase activity of clinically impor-
tant mutants of BCR::ABL1, including BCR::ABL1T315I 
with IC50 values ranging between 0.76 and 10.9 nM 
(Table S1).

KF1601 inhibited the proliferation of murine Ba/F3 
and human CML cell lines with either native BCR::ABL1 
or BCR::ABL1 T315I

We investigated the inhibitory effect of KF1601 on cellu-
lar proliferation using three murine Ba/F3 cell lines (i.e., 
parental, Ba/F3 cells expressing either native BCR::ABL1 
or BCR::ABL1T315I) and five human CML cell lines (i.e., 
K562, TCCS, TCCST315I, KOPM28, and KOPM28T315I). 
Figure  1D summarizes IC50 values of KF1601 and 
imatinib in these eight cell lines. Both KF1601 and 
imatinib strongly suppressed the proliferation of Ba/
F3BCR::ABL1, K562, TCCS, and KOPM28 harboring native 
BCR::ABL1. KF1601 strongly suppressed the prolifera-
tion of Ba/F3T315I, TCCST315I and KOPM28T315I harbor-
ing BCR::ABL1T315I, while imatinib did not.

KF1601 achieved complete tumor regression 
and prolonged survival in a CML xenograft mouse model
We evaluated the efficacy of KF1601 in reducing tumor 
burden in a CML xenograft mouse model using K562 
human CML cells. K562 tumor-bearing mice received 
oral doses of either vehicle (N = 10) or KF1601 (5, 10, or 
30 mg/kg, N = 10 per group) once daily for 18 consecu-
tive days. We measured tumor volume to assess tumor 
growth inhibition, and monitored survival for 8 weeks 
post-treatment. As depicted in Fig. 1F, tumor growth was 
entirely inhibited in all KF1601-treated groups. Follow-
ing the cessation of KF1601 treatment, complete tumor 
regression was sustained in 3 out of 10 mice treated with 

5 mg/kg of KF1601, and in all mice treated with either 10 
mg/kg or 30 mg/kg of KF1601 for 8 weeks (i.e., until the 
end of the study).

KF1601 reduced tumor burden and prolonged survival 
in an orthotopic CML mouse model
We evaluated the efficacy of KF1601 in reducing tumor 
burden in an orthotopic CML mouse model. Ba/F3 
cells, engineered to co-express BCR::ABL1T315I and fire-
fly luciferase, were intravenously injected into BALB/c 
nude mice. Three days post-injection, mice were ran-
domly assigned to one of five treatment groups: vehicle 
(negative control), ponatinib (positive control), and three 
groups treated with varying doses of KF1601 (25, 50 and 
100 mg/kg (N = 10 per group). Proliferation of the Ba/F3 
cells was monitored using in vivo bioluminescence imag-
ing, revealing that the tumor burden in KF1601-treated 
groups was reduced by over 99% compared to that in the 
vehicle-treated group (Fig. 1F). A reduction of over 99% 
in tumor burden corresponds to complete cytogenetic 
response in human CML treatment [31].

Following the cessation of KF1601 treatment at day 12, 
we monitored the survival of the five treatment groups. 
As depicted in Fig.  1G, we observed a median survival 
time of 21 days for the vehicle-treated mice, while in 
the KF1601-treated groups, the median survival time 
increased to 31–35 days, demonstrating a significant sur-
vival benefit comparable to that of ponatinib.

KF1601 inhibited FLT3 and suppressed the proliferation 
of BP‑CML cells
In our previous study, we established two CML cell 
line models to demonstrate the involvement of FLT3-
TAZ signaling in TKI resistance in BP-CML: 1) K562 
cells overexpressing FLT3 (K562-FLT3); 2) a subline of 
K562-FLT3 with imatinib resistance (K562-FLT3-IR). 
K562-FLT3 does not express TAZ and is not resistant to 
imatinib while K562-FLT3-IR expresses TAZ [28].

Utilizing the same cell line models (i.e., K562-FLT3 
and K562-FLT3-IR), we investigated the efficacy of 
KF1601 in inhibiting FLT3 signaling, in comparison to 
that of ponatinib. KF1601 effectively suppressed FLT3-
pSTAT3-TAZ signaling and BCR::ABL1 signaling in 
both K562-FLT3 and K562-FLT3-IR cells (Fig.  2A and 
B). Furthermore, KF1601 significantly suppressed the 
proliferation of both K562-FLT3 and K562-FLT3-IR cells 
(Fig. 2C-E).

To further evaluate the clinical relevance of our find-
ings, We investigated the efficacy of KF1601 in bone 
marrow mononuclear cells (BMMCs) isolated from 
CML patients. Initially, we confirmed the up-regula-
tion of FLT3 protein expression in BMMCs from BP-
CML patients (i.e., 1588(BP) and 2084(BP)) compared 
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to those from chronic phase (CP) CML patients (2F-
2I). As depicted in Fig.  2J and K, both imatinib and 
KF1601 exhibited minimal toxicity in PBMCs (PBMC1 
and PBMC2) derived from healthy donors, even at 
high concentrations. However, while imatinib exhib-
ited limited efficacy against BP-CML cells with FLT3 
overexpression, KF1601 demonstrated dose-depend-
ent inhibition of their proliferation. These results 
underscore the potential of KF1601 as a promising 
therapeutic agent for both prevention of resistance 
acquisition driven by FLT3 upregulation and treatment 
post-acquisition.

Evaluation of thrombo‑inflammatory responses: KF1601 
versus ponatinib in a murine thrombosis model
We compared the thrombo-inflammatory effects of 
KF1601 with ponatinib, a drug known for its poten-
tial to induce acute ischemic and other thrombo-
inflammatory responses, using a murine thrombosis 
model. As illustrated in Fig.  2L, ponatinib triggered 
severe thrombo-inflammatory responses, leading to 
the occlusion of carotid arteries with extensive vessel 
wall damage. In contrast, in mice treated with KF1601, 
carotid arteries remained unoccluded, with the vessel 
walls preserved intact. To further evaluate thrombus 
size, thrombosis was induced in testicular arteries. 
The average size score of thrombi induced by KF1601 
was 3.24, whereas that induced by ponatinib was 5.21. 
A size score of 3 indicates a medium-sized thrombus 
(measuring 75—150 × 75—150nm2), while a size score 
of 5 indicates an extra-large thrombus (measuring 300 
– 400 × 300 – 400 nm2). In simpler terms, the size of 
thrombus induced by KF1601 was approximately one-
tenth that induced by ponatinib (Fig. 2M).

Evaluation of KDR and platelet function inhibition: KF1601 
versus ponatinib
KDR inhibition and platelet dysfunction are recognized 
contributors to thrombo-inflammatory responses. KDR 
inhibition triggers endothelial cell damage, culminat-
ing in thrombosis [32]. As depicted in Fig. 2N, ponatinib 
demonstrated a KDR inhibition potency tenfold greater 
than that of KF1601. In addition, we conducted kinome 
analyses to compare the overall selectivity of KF1601 and 
ponatinib. As summarized in Supplementary Table  2, 
KF1601 exhibited greater selectivity compared to 
ponatinib.

Platelet dysfunction in normal physiological conditions 
often results in platelet aggregation, promoting thrombo-
sis. As summarized in Supplementary Table 3, ponatinib 
inhibited platelet function by more than 90% while 
KF1601 inhibited platelet function by approximately 25%, 
comparable to imatinib, a drug known for relatively low 
cardiovascular toxicity and arterial thrombotic event 
rate.

Discussion
In this study, we demonstrated the preclinical efficacy 
of KF1601, a novel dual inhibitor of BCR::ABL1 and 
FLT3, in addressing the unmet needs of CML treatment. 
KF1601 exhibited potent inhibitory activity against native 
BCR::ABL1 and clinically meaningful mutant forms, 
including BCR::ABL1T315I. This broad spectrum of activ-
ity holds promise for overcoming resistance associated 
with BCR::ABL1 mutations, offering a potential thera-
peutic option for patients with refractory disease.

Importantly, our study also highlights the role of FLT3 
pathway activation in promoting TKI resistance in BP-
CML. Activation of FLT3 signaling has been implicated 
in promoting leukemic cell proliferation and survival, 
particularly in the context of BP-CML [33]. By targeting 

(See figure on next page.)
Fig. 2  Effects of KF1601 on FLT3 signaling pathway and thrombo-inflammatory responses. A Immunoblotting analysis of FLT3 signaling pathway 
in K562-FLT3 cells treated with KF1601, ponatinib (Pona) for 4h. B Immunoblotting analysis of FLT3 signaling pathway in K562-FLT3-IR cells treated 
with KF1601, ponatinib for 17h. C Cell images of K562-FLT3 cells at day 4 post-treatment with compounds, and images of K562-FLT3-IR cells 
at day 6 post-treatment with compounds. D and E Cell viability measurement of K562-FLT3 cells at day 4 post-treatment with compounds (D), 
and that of K562-FLT3-IR cells at day 6 post-treatment with compounds (E). F and G Immunoblotting analysis of FLT3 protein in BMMCs from BP 
CML patients (1588(BP) and 2084(BP)). BMMCs from CP CML patients (1588(CP) and 903(CP)) were used as negative controls for FLT3 expression. 
H and I Immunofluorescence images of FLT3 expression (green) on the cell surface in 1588(BP) and 2084(BP) cells. 1332(CP) and 2084(CP) were 
used as negative controls for FLT3 expression. DAPI (blue) was used as a nuclear marker. J and K Cell viability measurement of PBMCs from normal 
donors and BMMCs from BP CML patients. PBMCs and BMMCs were subjected to treatment with either imatinib (J) or KF1601 (K) for 4 days. 2084 
(BP) harbors BCR::ABL1 T315I mutation with a distinct FLT3 expression pattern (F); 1588 (BP) harbors BCR::ABL1 E255V mutation with a distinct FLT3 
expression pattern (G). n = 3 per group. L The left panel illustrates the pivotal role of FLT3 in BP-CML progression and TKI resistance. The right panel 
illustrates potential of KF1601 may overcome TKI resistance by targeting mutant forms of BCR::ABL1 while also addressing the FLT3-mediated 
signaling pathways. L Thrombo-inflammatory responses in carotid arteries. Ponatinib induced occlusion of carotid arteries with extensive vessel 
wall damage. Conversely, in mice treated with KF1601, carotid arteries remained unoccluded, with the vessel walls preserved intact. M Evaluation 
of thrombus size in testicular arteries. The size of thrombus induced by KF1601 was approximately one-tenth that induced by ponatinib. N KDR 
inhibition. Ponatinib exhibited a KDR inhibition potency tenfold greater than that of KF1601
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both BCR::ABL1 and FLT3, KF1601 demonstrated syn-
ergistic anti-leukemic effects, as evidenced by its ability 
to induce cell death in FLT3 + BCR::ABL1 TKI-resistant 
CML cells. These findings underscore the potential clini-
cal utility of KF1601 in addressing the therapeutic chal-
lenges associated with BP-CML, where conventional 
TKIs may fall short. Also, as Copland [27] emphasized, 
due to poor outcomes of BP-CML, we need to focus on 

preventing the progression to BP-CML. The ability of 
KF1601 to concurrently inhibit both BCR::ABL1 and 
FLT3 signaling pathways has the potential to mitigate 
the development of BP-CML cells, offering a novel thera-
peutic strategy for preventing disease progression and 
improving patient outcomes.

While ponatinib demonstrated efficacy in inhibiting both 
BCR::ABL1 and FLT3, thereby potentially addressing the 

Fig. 2  (See legend on previous page.)
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therapeutic challenges associated with BP-CML, its clini-
cal utility is hindered by significant limitations. The occur-
rence of life-threatening adverse effects, including arterial 
obstruction, thromboembolism, and heart failure, under-
scores the need for alternative treatment options [20]. In 
contrast, KF1601 presents a promising alternative with a 
favorable safety profile observed in preclinical studies. The 
ability of KF1601 to simultaneously target BCR::ABL1 and 
FLT3, coupled with its oral bioavailability and potential for 
reduced adverse effects, positions it as a compelling can-
didate for the management of BP-CML. Additionally, the 
development of KF1601 offers the possibility of address-
ing the unmet needs of CML patients resistant to first- and 
second-generation TKIs, including those harboring the 
BCR::ABL1T315I mutation, without compromising on safety 
or efficacy. Further clinical investigation is warranted to 
validate the therapeutic benefits of KF1601 in BP-CML and 
to delineate its comparative advantages over existing treat-
ment modalities, including ponatinib.

Conclusion
The emergence of TKI resistance and the clinical com-
plexities associated with BP-CML underscore the urgent 
need for novel therapeutic approaches. KF1601, a dual 
inhibitor targeting both BCR::ABL1 and FLT3, demon-
strates promising preclinical efficacy in overcoming resist-
ance mechanisms, including the notorious BCR::ABL1T315I 
mutation, while also addressing FLT3-mediated signaling 
implicated in BP-CML progression (Supplementary Fig. 2). 
Unlike existing therapies such as ponatinib, KF1601 offers 
a favorable safety profile, potentially minimizing the risk of 
life-threatening adverse effects. Future clinical studies are 
warranted to validate the therapeutic benefits of KF1601 in 
TKI-resistant chronic and blast phase CML.
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