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[2, 3] – worldwide melanoma incidence in 2019 was six 
times higher than 40 years prior [4], with an estimated 
325,000 cases globally in 2020 [2]. Since 2011, significant 
advancements in treatment, including US Food and Drug 
Administration (FDA)-approved molecular targeted 
therapies (e.g. V-Raf Murine Sarcoma Viral Oncogene 
Homolog (BRAF) and mitogen-activated protein kinase 
kinase (MEK) inhibitors), as well as immune checkpoint 
inhibitors (e.g. programmed cell death-1 (PD-1) and 
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) 
inhibitors), have contributed to a 17.9% reduction in mel-
anoma mortality rates between 2013 and 2016 [5, 6]. The 
clinical benefits of these therapies are limited, however, 
by the development of innate and acquired resistance and 
the incidence of severe treatment-related adverse events. 
Approximately 70–90% of patients with advanced mela-
noma experience disease progression despite treatment 
with these therapies [7, 8], and nearly 60% of melanoma 

Introduction
Melanoma is an aggressive malignancy that arises from 
melanocytes, specialised pigment-producing cells derived 
from the neural crest. While melanocytes are primarily 
found in the skin, they are also present in the eyes, ears 
and mucosal membranes, and melanoma can develop in 
any of these locations [1]. Cutaneous melanoma accounts 
for over 90% of all melanoma diagnoses, while mucosal 
and uveal melanomas are rare, and comprise less than 5% 
of cases. The global incidence of cutaneous melanoma 
continues to rise, particularly in fair-skinned populations 

Molecular Cancer

*Correspondence:
Helen Rizos
helen.rizos@mq.edu.au
1Faculty of Medicine, Health and Human Sciences, Macquarie University, 
Sydney, NSW, Australia
2Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, 
Australia

Abstract
MicroRNAs (miRNAs) hold significant promise as circulating cancer biomarkers and unlike many other molecular 
markers, they can provide valuable insights that extend beyond tumour biology. The expression of circulating 
miRNAs may parallel the cellular composition and dynamic activity within the tumour microenvironment and 
reveal systemic immune responses. The functional complexity of miRNAs—where a single miRNA can regulate 
multiple messenger RNAs (mRNAs) to fine tune fundamental processes, and a single mRNA can be targeted by 
multiple miRNAs—underscores their broad significance and impact. However, this complexity poses significant 
challenges for translating miRNA research into clinical practice. In melanoma, specific miRNA signatures have 
shown notable diagnostic, prognostic and predictive value, with lineage-specific and immune-related miRNAs 
frequently identified as valuable markers. In this review, we explore the role of circulating miRNAs as potential 
biomarkers in melanoma, and highlight the current status and advances required to translate miRNA research into 
therapeutic opportunities.

Keywords  MicroRNA, Melanoma, Treatment prediction, Biomarkers, Immune checkpoint inhibitors, Targeted 
therapies

Circulating MicroRNAs: functional biomarkers 
for melanoma prognosis and treatment
Su Yin Lim1,2, Suzanah C. Boyd1,2, Russell J. Diefenbach1,2 and Helen Rizos1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-025-02298-7&domain=pdf&date_stamp=2025-3-27


Page 2 of 17Lim et al. Molecular Cancer           (2025) 24:99 

patients receiving combination anti-CTLA-4 and anti-
PD-1 therapy experience grade 3 or 4 adverse events [8].

Further improvements in melanoma outcomes are 
expected through earlier screening and correct diag-
nosis [9, 10], alternative combination therapies such 
as relatlimab (Lymphocyte-activation gene 3 (LAG3) 
inhibitor) with nivolumab (PD-1 inhibitor) rather than 
nivolumab alone [11], and optimised treatment tim-
ing such as perioperative and response-driven adjuvant 
therapy for patients with high-risk disease [12, 13]. How-
ever, these advancements underscore the urgent need 
to identify biomarkers to monitor treatment response, 
detect resistance, and identify post-surgical recurrence. 
miRNAs are key regulators of cancer biology, play-
ing crucial roles in tumour initiation, progression, and 
metastasis [14]. The expression of miRNAs is dysregu-
lated in many cancers, including melanoma [15] and 
miRNAs are emerging as promising biomarkers for dis-
ease diagnosis and prognosis. In this review, we examine 
the role of circulating miRNAs in melanoma, focusing 

on their diagnostic, prognostic, and predictive poten-
tial. Additionally, we evaluate the therapeutic potential 
of miRNAs, exploring their role in enhancing treatment 
strategies for melanoma.

MicroRNAs: biosynthesis and functional roles
miRNAs are single-stranded ribonucleic acids (RNAs), 
typically 21–25 nucleotides in length [16, 17]. Most miR-
NAs are derived from longer non-coding or intronic pri-
mary transcripts, which are capped and polyadenylated. 
A smaller number of miRNAs are derived from exonic 
or intergenic deoxyribonucleic acid (DNA) regions [18, 
19]. miRNAs are transcribed in the nucleus and exported 
to the cytoplasm, where they are cleaved into mature 
miRNAs by the Dicer endonuclease enzyme in complex 
with RNA binding proteins (Fig.  1) [20]. Comprehen-
sive details on miRNA biogenesis are provided in several 
recent reviews [21, 22].

The 2024 Nobel Prize in Medicine was awarded to 
US scientists Victor Ambros and Gary Ruvkun for the 

Fig. 1  Canonical miRNA biosynthesis and miRNA function. Following transcription by RNA polymerase II/III (RNA pol II/III), primary miRNAs (pri-miRNAs) 
are cleaved at the base of a hairpin structure by the nuclear DROSHA RNase III to yield ~ 60–70 nucleotide precursor miRNAs (pre-miRNAs). Pre-miRNAs 
are exported to the cytoplasm via an Exportin-5 receptor-dependent process where they undergo further cleavage by the Dicer RNase III bound to 
RNA-binding proteins, such as TRBP. The resulting miRNA duplex associates with an AGO protein, where one miRNA strand (the guide strand) is selected 
to form the functional miRISC. The miRNA may originate from the 5’ end of the pre-miRNA or the 3’ end of the pre-miRNA giving rise to the -5p or -3p 
miRNAs, respectively. The unbound strand of the miRNA duplex is ejected from the AGO protein and degraded. Once formed, miRISC binds to target 
mRNAs and inhibits translation by competing with eIF4F recognition of the 7-methyl-G (m7G) cap, inhibiting cap-dependent translation initiation and 
destabilizing the target mRNA through the recruitment of de-adenylation complexes, which remove the stabilizing 3’ poly(A) tail
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discovery of miRNAs and their pivotal role in post-
transcriptional regulation of gene expression. miRNAs 
bind to complementary sequences in the 3’ untranslated 
region (3’ UTR) or the 5’ UTR of target mRNAs to regu-
late the expression of approximately 60% of human genes 
[23]. This miRNA-mRNA interaction promotes the deg-
radation or direct translational suppression of the target 
mRNAs [24–26] (Fig. 1). According to the miRNA repos-
itory (miRBase registry V22.1), there are currently 2656 
mature human miRNA species [27]. A single miRNA 
can regulate multiple mRNA targets, with its binding 
specificity determined by the complementarity between 
the miRNA seed region (bases 2–8 of the miRNA [28]) 
and the 3’ UTR of target mRNAs [29, 30]. For example, 
miR-34 interacts with and downregulates the expression 
of several cell cycle regulatory genes, including cyclin-
dependent kinase 4 (CDK4) [31], CDK6, cyclin D1 [32], 
and E2F transcription factor 3 [33]. Conversely, a single 
mRNA can be targeted by multiple miRNAs, leading to 
complex regulation of gene expression. For instance, over 
15 miRNAs have been predicted to bind with high prob-
ability to the 3’ UTR of microphthalmia-associated tran-
scription factor (MITF), a key transcriptional regulator of 
melanocyte development and function (Fig. 2).

miRNAs regulate many biological processes, includ-
ing cell development, growth, differentiation, metabo-
lism, and homeostasis, both under normal physiological 
conditions and in various diseases [34, 35]. Generally, 
oncogenic miRNAs or oncomiRs promote cancer devel-
opment and are overexpressed in cancer, whereas tumour 

suppressor miRNAs may promote apoptosis or cell cycle 
arrest and are under expressed in cancer [36]. Impor-
tantly, this classification lacks consistency and may not 
be informative, as miRNAs can act as either tumour-pro-
moting or tumour-suppressive (e.g. miR-125 [37]), a dis-
tinction most likely dictated by the transcriptional milieu 
of the cancer.

miRNAs are also released into extracellular fluids, and 
circulating miRNAs have been detected in plasma, serum 
[38, 39], cerebrospinal fluid [40], and urine [41]. In can-
cer, both viable and dying tumour cells actively secrete 
miRNA to produce circulating miRNAs [39, 42]. Most 
circulating miRNAs are stabilised due to their associa-
tion with proteins, such as the miRNA-inducing silencing 
complex (miRISC) effector protein Argonaute 2 (AGO2), 
nucleophosmin, high-density lipoproteins [43, 44] or 
extracellular vesicles such as exosomes, microvesicles 
and apoptotic bodies [45]. The lineage, differentiation 
and tissue-specificity of miRNAs make them valuable 
disease biomarkers, while their stability enhances their 
utility as reliable liquid biopsy biomarkers.

Circulating MiRNAs as diagnostic biomarkers in melanoma
The current standard for melanoma diagnosis involves 
the histopathological assessment of an excision biopsy, 
interpreted in conjunction with clinical information such 
as patient age, lesion site, and lesion history [46]. Despite 
the standardisation of diagnostic criteria, the diagnosis 
of melanomas can be challenging. A histopathological 
review of over 3300 melanocytic lesions demonstrated 

Fig. 2  miRNA regulators of the MITF gene. Multiple miRNAs can bind to identical and overlapping regions within the 3’ UTR of the target human MITF 
mRNA. miRNAs with 8mer or 7mer seed sites are highlighted in red and blue, respectively. Data are derived from TargetScanHuman (release 7.2) [181]. The 
hg19 chromosome coordinates of the MITF mRNA and the miRNA binding sites are shown
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substantial diagnostic variation, with 24% of cases 
receiving equivocal diagnostic results between derma-
topathologists [47]. Diagnostic ambiguity was associ-
ated with variations in treatment [47], and heightened 
diagnostic scrutiny has led to an increased rate of mis-
diagnosing benign melanocytic lesions as melanoma [4]. 
Consequently, clinicians are evaluating and implement-
ing adjunct diagnostic tools, including immunohisto-
chemistry stains (e.g. PReferentially expressed Antigen in 
MElanoma or PRAME [48]), gene expression signatures 
[49], genomic analysis [50] and digital pathology work-
flows [51] to support the diagnosis of challenging cases.

A recent systematic review [52] identified nine inde-
pendent studies [53–61] investigating the diagnostic 
utility of circulating miRNAs in melanoma. All studies 
used a melanoma-healthy control design and employed 
reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR) to measure the expression of indi-
vidual or panels of circulating miRNAs. Across these 
studies, 82 distinct miRNAs were detected in blood, 
plasma or serum, with individual diagnostic sensitiv-
ity ranging from 0.71 to 0.97 and specificity from 0.62 
to 0.98. Notably, despite minimal overlap in miRNAs 
investigated across the nine studies, a pooled analysis of 
these 82 miRNAs demonstrated a diagnostic sensitivity 
of 0.89, specificity of 0.85, and an area under the curve 
(AUC) of 0.93 [52]. Importantly, several miRNAs that 
distinguished melanoma from healthy controls also dis-
criminated melanoma from other cancers. For instance, 
loss of serum miR-29c distinguished melanoma from 
metastatic colon and renal cancer [62]. miRNA cancer 
specificity also likely reflects lineage specific differences 
as some miRNAs, such as miR-211-5p, are located within 
an intron of TPRM1, which is a target gene of MITF [63].

The circulating MEL38 miRNA signature emerges as a 
notable diagnostic panel for melanoma with significant 
validation data. MEL38 miRNAs were identified as dif-
ferentially expressed between individuals with or without 
cutaneous melanoma by whole miRNA profiling [53]. 
This signature consists of skin-cell derived miRNAs and 
22/38 miRNAs have been previously identified in mela-
noma [53]. The MEL38 miRNA signature is enriched 
for pathways related to melanogenesis, T cell activation 
and mitogen-activated protein kinase (MAPK) acti-
vation [53]. The diagnostic utility of MEL38 has been 
independently validated in peripheral blood [53], in for-
malin-fixed paraffin-embedded tissue biopsies [64], and 
recently, in 582 plasma samples derived from melanoma 
patients or control individuals with non-melanoma skin 
conditions [54]. In the latter study, using a threshold of 
5.5, MEL38 achieved a 93% true-positive rate (sensitiv-
ity) and a 98% true-negative rate (specificity) for the pres-
ence of invasive melanoma [54]. MEL38 was associated 
with melanoma, irrespective of tumour thickness and 

melanoma type (superficial, nodal or amelanotic) [53]. 
Importantly, despite being designed as a diagnostic sig-
nature, MEL38 also showed prognostic value as a con-
tinuous predictor of melanoma-specific survival (MSS) 
[54]. Although circulating miRNAs hold potential as an 
adjunct to pathological assessment in diagnosing chal-
lenging lesions, their clinical implementation remains 
limited. In fact, we identified only one miRNA-based 
diagnostic tool currently in use in oncology. The Thy-
GeNEXT oncogene panel, combined with the ThyraMIR 
v2 miRNA panel, is applied to improve the diagnostic 
accuracy of cytologically indeterminate thyroid nodules, 
with a reported sensitivity of 96% and specificity of 99% 
[65].

Overall, miRNAs have yet to demonstrate consistent 
and reliable diagnostic utility in broader clinical set-
tings, and their application remains largely exploratory. 
Advancing the diagnostic potential of miRNA signatures 
will require large-scale studies involving representative 
cohorts, comprehensive clinical annotation and stan-
dardised experimental workflows. These studies should 
also integrate multi-omics data, including genetic, clini-
copathological, and imaging information, to enhance the 
robustness and clinical utility of miRNA-based diagnos-
tic markers.

Circulating MiRNAs as prognostic biomarkers in melanoma
Immune and targeted therapies have revolutionised the 
treatment of patients with advanced (stage IV) melanoma 
and these therapies are being used in the earlier-stage 
setting, including in patients with stage II (node-nega-
tive) [66, 67] and stage III melanoma (disease has spread 
to regional lymph nodes [13, 68, 69]). The outcomes of 
these patients are heterogenous, with substantial risks of 
recurrence. For instance, 27.2% of patients with stage II 
melanoma will recur within 5 years [70] and the 5-year 
MSS rates for Stage IIB (87%), IIC (82%) and IIIB (83%) 
are comparable [71]. There is, therefore, significant inter-
est in developing reliable prognostic biomarkers, across 
all stages of melanoma, to guide treatment-decision mak-
ing. Several commercially available gene expression pro-
files have been developed to stratify melanoma patients 
according to risk of recurrence. These include the Deci-
sionDx-melanoma 31-gene expression profiling (GEP) 
assay (Castle Biosciences, USA) [72, 73], the Merlin 
8-GEP test (Skyline Dx, Netherlands) [74] and the Mela-
Genix 11-GEP test (NeraCare, GmbH) [75].

Numerous studies have also investigated the asso-
ciation of circulating miRNAs with melanoma patient 
outcomes, including overall survival (OS), disease free 
survival (DFS), MSS and the development of brain or dis-
tant metastases (Table  1). These investigations typically 
focus on a narrow set of miRNAs, and we have identi-
fied over 50 reported prognostic circulating miRNAs in 
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Table 1  Prognostic Circulating MiRNA biomarkers in cutaneous melanoma
miRNA Detection 

method
Sam-
ple 
Type

Cohort Clinical associations

miR-10b RT-qPCR Serum 85 melanoma patients, 30 healthy controls High serum miRNA is an independent predictor of poor OS 
and DFS [57]

miR-15b, miR-
30d, miR-150, 
miR-425

RT-qPCR Serum 210 stage I-III melanoma patients (discovery),
82 stage I-III melanoma patients (validation)

Serum miRNA signature is associated with risk of recurrence. 
In combination with stage, these miRNAs improved predic-
tion of recurrence with AUC of 0.760 (discovery) and 0.790 
(validation) [76]

miR-15b, 
miR-33a, miR-
150, miR-424, 
miR-199a-5p

RT-qPCR Serum 80 stage I-III melanoma patients (discovery 
cohort),
60 stage I-III melanoma patients (validation 
cohort)

Serum miRNA signature is associated with disease stage and 
predicted recurrence with sensitivity of 95%, specificity of 
41% in validation cohort [77]

miR-16 RT-qPCR, 
miRNA 
microarray

Serum 20 melanoma patients, 20 healthy controls 
(discovery cohort),
120 melanoma patients, 120 healthy controls 
(validation cohort)

Low serum miRNA is associated with melanoma stage and 
discriminates melanoma patients from healthy controls with 
AUC of 0.779, sensitivity of 80%, specificity of 71.7%. Low 
serum miRNA is an independent predictor of OS [78]

miR-21 RT-qPCR Plasma 16 primary, 10 stage III, 4 stage IV melanoma 
patients,
11 healthy controls

High plasma miRNA is associated with increased tumour 
burden [79]

miR-23a RT-qPCR Serum 192 melanoma patients,
51 healthy controls

Low serum miRNA is associated with metastasis and is an 
independent predictor of poor OS. miR-23a is shown to 
regulate autophagy by targeting ATG12 [80]

miR-99a, miR-
221, miR-320, 
miR-494, miR-
1908, miR-4487

RT-qPCR Plasma 22 Stage I and II melanoma patients Plasma miRNA signature is associated with shorter DFS and 
worse OS [81]

miR-107 RT-qPCR Plasma 46 stage III melanoma patients Plasma miRNA is a biomarker for DFS [82]
miR-150-5p, 
miR-142-3p

RT-qPCR Serum 52 stage III and 40 stage IV melanoma 
patients (discovery cohort), 31 melanoma 
patients, 
43 healthy controls (validation cohort)

Low serum miRNA in stage IV melanoma patients is associ-
ated with shorter OS [83]

miR-206 RT-qPCR Serum 60 melanoma patients, 30 healthy controls Low serum miRNA is an independent predictor of poor OS 
and DFS [84]

miR-210 RT-qPCR Plasma 60 stage III and 70 stage IV melanoma 
patients (cohort A), 
88 stage III melanoma patients (cohort B)

High plasma miRNA is associated with poor DFS and MSS [85]

miR-221 RT-qPCR Serum 72 melanoma patients, 54 healthy controls High serum miRNA is an independent prognostic factor for 
poor 5-year OS and DFS [86]

miR-221 RT-qPCR Serum 94 melanoma patients, 20 healthy controls High serum miRNA is correlated with increased tumour 
thickness [87]

MELmiR-7 
signature1

RT-qPCR Serum 86 stage I/II, 50 stage III, 119 stage IV mela-
noma patients, 130 healthy controls

Serum MELmiR-7 signature discriminates melanoma patients 
from healthy controls and predicted OS [56]

MEL12 
signature2

miRNA 
sequencing

Plasma 232 melanoma patients Plasma MEL12 signature is associated with disease outcome, 
sentinel lymph node biopsy status, and clinical stage [54, 88]

63 and 294 
panel miRNA 
signatures

miRNA 
sequencing

Plasma 36 pre-operative melanoma brain metastasis 
patients, and 48 healthy controls (discovery), 
24 melanoma brain metastasis patients

Plasma 6 miRNA signature distinguishes melanoma brain me-
tastases from other brain metastases and glioblastoma [89]. 
Plasma 29 + 6 miRNA signature is associated with melanoma 
brain progression [89]

miRNAs highlighted in bold have been reported to be involved in immune regulation
1MELmiR-7 signature includes miR-16, miR-211-5p, miR-4487, miR-4706, miR-4731, miR-509-3p, miR-509-5p
2MEL12 signature includes miR-122-5p, miR-107, miR-125a-5p, miR-151a-3p, miR-30d-5p, miR-598-3p, miR-22-3p, miR-204-5p, miR-378i, miR-21-5p, miR-4516, miR-630
36 miRNA signature includes miR-5694, miR-6796-3p, miR-6741-3p, miR-4664-3p, miR-4665-5p, miR-671-5p
429 miRNA signature includes miR-3937, miR-1299, miR-1273e, miR-670-3p, miR-1225-3p, miR-574-5p, miR-6780b-5p, miR-3674, miR-7111-5p, miR-1273a, miR-6877-
5p, miR-6775-5p, miR-4279, miR-5585-3p, miR-548d-5p, miR-7114-3p, miR-1207-5p, miR-3135a, miR-6789-3p, miR-1273c, miR-1228-3p, miR-1273g-5p, miR-143-5p, 
miR-6795-3p, miR-6162, miR-920, miR-378f, miR-3663-5p, miR-3184-3p
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melanoma from various stages; most have not been vali-
dated and only a few have been identified across multiple 
studies (Table 1).

An intriguing finding from melanoma prognostic stud-
ies is the link between immune-modulatory miRNAs 
(im-miRNAs) and patient outcomes. For instance, miR-
150-5p is predominantly derived from tumour infiltrating 
lymphocytes [90] and has been shown to be released into 
the circulation upon T cell activation [91]. Predictably, 
low miR-150-5p expression in primary melanoma tissue 
correlated with low intratumoural CD45+ immune cells 
[90]. Low tissue expression of miR-150 was also associ-
ated with poor survival outcomes in stage III and IV mel-
anoma patients [83]. In the circulation, serum miR-150 
expression shows an inconsistent association with mela-
noma prognosis, although two out of three studies report 
lower serum miR-150 levels associated with poorer out-
comes in early-stage and advanced melanoma [76, 83] 
(Table 2). miR-15b (targets programmed cell death ligand 
1 (PD-L1) [92]), and miR-23a (targets transcription fac-
tor B lymphocyte-induced maturation protein-1 [93]), 
activate cytotoxic CD8+ T cells and lower serum levels 
of these immune regulators are linked to poor outcomes 
in melanoma patients [77, 80]. Finally, miR-221, a com-
monly identified prognostic melanoma marker, inhibits 
Janus kinase/Signal transducers and activators of tran-
scription (JAK/STAT) signalling by targeting protein 
coding genes such as SOCS3 and IRF2 [94], and modu-
lates T helper 17 cell responses [95]; overexpression of 
this miRNA in serum is consistently associated with 
worse OS in melanoma patients [81, 86, 87].

These findings underscore the value and potential limi-
tations of miRNAs. Their pleiotropic roles result in mark-
ers that provides a dynamic fingerprint that may reflect 
tumour-specific features, local immune responses and 
systemic immunity alongside patient outcomes. How-
ever, these extensive effects can also complicate the deri-
vation of specific miRNA signatures with high prognostic 
specificity.

Circulating MiRNAs in melanoma treatment response and 
resistance
The development of therapies targeting BRAF and MEK 
and immune checkpoint inhibitors have dramatically 
improved the outcomes of patients with advanced and 
high-risk, stage III melanoma. Targeted therapies are an 
option for patients with BRAFV600-mutant melanoma, 
which represents about 40% of metastatic melanoma 
[96]. Approximately 70% of these patients will respond to 
combination BRAF/MEK inhibitors but acquired treat-
ment resistance is common, and few patients will achieve 
durable responses. The 5-year progression-free survival 
(PFS) and OS rates for patients with advanced BRAF-
mutant melanoma receiving combination BRAF/MEK 

inhibitors range from 14–25% and 31–35%, respectively 
[97–99]. Conversely, immune checkpoint inhibitors, 
including ipilimumab, an antibody inhibitor of CTLA-
4, and PD-1 inhibitors, nivolumab and pembrolizumab, 
demonstrate long-term efficacy. In the phase 3 Check-
Mate 067 clinical trial, 5-year PFS and OS rates were 36% 
and 52%, respectively, in patients with advanced mela-
noma receiving combination nivolumab and ipilimumab 
[100]. The combination of nivolumab with relatlimab also 
shows durable responses with 5-year PFS and OS rates of 
28% and 49%, respectively [11].

Despite the effectiveness of current molecular and 
immune-based therapies, more than 50% of melanoma 
patients will exhibit innate resistance or develop acquired 
resistance to therapy [7, 101, 102]. Many promising new 
treatments are being tested, including tumour-infiltrat-
ing lymphocytes (2024 FDA-approved Lifileucel [103]), 
mRNA and multi-peptide vaccines (e.g. phase 2 KEY-
NOTE-942 and Mel44 clinical trials [104, 105]), and bi-
specific fusion proteins (e.g. PD-1/interleukin-2 bispecific 
antibody fusion protein IBI363 [106]). Ongoing efforts 
are focussed on identifying reliable biomarkers that can 
accurately predict and monitor treatment response.

The miRNAome undergoes large changes in response 
to BRAF inhibitor treatment and during the acquisi-
tion of resistance in melanoma cell lines. Although, the 
majority of miRNA changes are cell line dependent, it 
is evident that common pathways, including the MAPK 
cascade, survival networks and melanoma differentiation 
are deregulated during BRAF inhibitor resistance [107, 
108], and miRNAs that regulate these pathways may 
function as potential biomarkers of treatment response 
and resistance. For example, miR-4443 (targets multiple 
survival pathways [109]), miR-199b-5p (targets vascular 
endothelial growth factor A (VEGFA) and hypoxia induc-
ible factor 1 subunit alpha (HIF1α) [107]) and miR-4488 
(targets differentiation marker nestin [110]) in plasma 
samples of melanoma patients discriminated BRAF/MEK 
inhibitor responders from non-responders with an AUC 
of 0.894 [107]. Melanoma dedifferentiation, characterized 
by MITF downregulation [111], leads to a slow-cycling 
cell state with increased resistance to BRAF/MEK and 
immune checkpoint inhibitors [112–114]. miRNAs tar-
geting MITF (Fig.  2) are upregulated in BRAF inhibitor 
resistant melanoma cell models [108], but the relation-
ship between MITF-targeting miRNAs in the circulation 
and BRAF inhibitor resistance remains to be investigated.

As reviewed elsewhere [115], im-miRNAs can regulate 
immune checkpoint expression, antigen processing/pre-
sentation and interferon gamma (IFNγ) signalling, and 
these miRNAs can additionally function as predictive 
biomarkers of immune checkpoint inhibitor therapy. For 
instance, a circulating miRNA signature (miR-146a, miR-
155, miR-125b, miR-100, let-7e, miR-125a, miR-146b, 
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and miR-99b) identified in extracellular vesicles released 
by melanoma tumours was associated with increased 
myeloid-derived suppressor cells and resistance to ipilim-
umab and nivolumab therapy [116].

Another study reported that patients with high plasma 
levels of miR-155-5p, miR-320a and miR-424-5p prior 
to first-line anti-PD-1 therapy had longer PFS and OS. 
This study also confirmed the immune regulatory role 
of miR-155-5p, with plasma miR-155-5p levels corre-
lating with PD1+ CD4+ T cells [117]. Additionally, miR-
28 (targets PD-1, T-cell immunoglobulin and mucin 
domain 3 and B- and T-lymphocyte attenuator [118]) 
and miR-17-5p (targets PD-L1 [119]), suppress expres-
sion of immune checkpoint molecules, thus modulating 
anti-tumour immune functions, and serum levels of miR-
17-5p inversely correlated with tumour PD-L1 expression 
in patients with metastatic melanoma [119]. In a cohort 
of 33 patients, serum levels of miR-16-5p, miR-17-5p, 
miR-451a and miR-20a-5p were higher in melanoma 
anti-PD-1 responders (n = 10) compared to non-respond-
ers (n = 23), and elevated serum levels of miR-1972 and 
miR-4502 were associated with non-response to anti-
PD-1 [120]. Multivariate logistic regression analysis 
indicated miR-16-5p, miR-17-5p and miR-20a-5p to be 
independent predictors of response to PD-1 inhibitor 
therapy [120]. These data suggest that miRNAs predic-
tive of PD-1 inhibitor response may contribute to patient 
outcomes by modulating the immunosuppressive PD-1/
PD-L1 axis, and more than 100 miRNAs have been impli-
cated in the regulation of immune checkpoints, including 
PD-1, PD-L1 and CTLA-4 (reviewed in [121]). Collec-
tively, these data indicate that miRNAs can act as pre-
dictive biomarkers, but also actively modulate treatment 
response and resistance. As a result, miRNAs are emerg-
ing as promising therapeutic targets.

Therapeutic potential of MiRNAs in melanoma
Given the critical roles that miRNAs play in melanoma 
progression and therapy response, targeting miRNAs has 
emerged as a compelling therapeutic strategy. Several 
miRNAs have been reported to regulate the MAPK path-
way in melanoma (Fig. 3), and manipulating the expres-
sion of these miRNAs can alter melanoma sensitivity to 
BRAF/MEK inhibitors. For instance, miR-7 suppresses 
epidermal growth factor receptor (EGFR), insulin like 
growth factor 1 receptor (IGF-1R) and RAF proto-onco-
gene serine/threonine-protein kinase (CRAF) expression, 
consequently inhibiting MAPK and phosphatidylinosi-
tol 3-kinase/protein kinase B signalling, and transfec-
tion of melanoma cells with miR-7 mimics resensitised 
cells to the BRAF inhibitor vemurafenib [122]. Simi-
larly, miR-579-3p was shown to target BRAF and resto-
ration of miR-579-3p expression sensitised melanoma 
cells to BRAF and MEK inhibitors [123], suggesting that Cl
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combining miR-579-3p mimics with existing targeted 
treatments could be beneficial. miRNAs can also modu-
late anti-tumour activity during immune checkpoint 
inhibitor therapy. For example, miR-155 promotes the 
activity of effector CD8+ T cells and its deficiency in T 
cells can dampen T cell activation by inhibiting IFNγ 
production; miR-155 upregulation in peripheral blood 
correlates with increased CD8+ T cell infiltration and 
improved tumour control [124], whilst miR-155 defi-
ciency enhanced tumour growth in a B16F10 melanoma 
mouse model [125]. This enhanced tumour growth, how-
ever, can be attenuated by the administration of immune 
checkpoint inhibitors (anti-PD-1, anti-PD-L1 and anti-
CTLA-4 combination), suggesting that combining 

miR-155 overexpression with immune checkpoint block-
ade may augment anti-tumour responses [125]. miR-146a 
has also been reported to suppress Signal transducer and 
activator of transcription 1 (STAT1) signalling and IFNγ 
production in T cells, and combination of miR-146a inhi-
bition with anti-PD-1 improved survival in a melanoma 
mouse model compared to anti-PD-1 alone [126].

The expression of miRNAs can be modulated, either 
by silencing or restoring their levels, to influence mela-
noma proliferation, progression, and survival. Antisense 
oligonucleotides, known as antagomiRs or anti-miRs, 
silence specific miRNAs by preventing their binding to 
target mRNAs (Fig.  4), and these can have broad func-
tional effects. For example, transfection of melanoma 
cell lines with a miR-211 antagomiR derepressed insulin 
like growth factor 2 receptor (IGF-2R), nuclear factor of 
activated T cells 5 (NFAT5) and transforming growth fac-
tor beta receptor 2 (TGFBR2) expression, and increased 
melanoma cell invasion and migration [127]. In contrast, 
inhibition of the pro-metastatic miR-182 with antisense 
oligonucleotides reduced cell viability and suppressed 
migration and invasion of melanoma cell lines, likely by 
restoring the expression of miR-182 targets FOXO3 and 
MITF [128]. In another study, treatment of mice with 
anti-miR-182 reduced the number and size of mela-
noma liver metastases compared to control treated mice 
[129], further supporting miR-182 as a therapeutic tar-
get. Inhibition of miRNAs can also be achieved using the 
CRISPR/Cas system, but like other gene editing tech-
nologies, this approach is limited by off-target effects and 
the need for selective and efficient delivery to target cells 
(reviewed in [130]).

BlockmiRs are modified oligonucleotides that inhibit 
miRNA activity by specifically binding to the 3’ UTR of 
the target mRNA and sterically hindering the miRNA-
mRNA interaction. Indeed, miR-27a interaction with 
CDH5 (encodes Cadherin 5/VE-Cadherin) is abolished by 
BlockmiR CD5-2, and combination treatment of CD5-2 
with anti-PD-1 significantly reduced tumour burden 
compared to CD5-2 or anti-PD-1 alone in a liver cancer 
mouse model [131]. Other inhibitory methods include 
small molecule inhibitors that interfere with miRNA 
transcription, miRNA sponges that serve as decoys with 
multiple binding sites to prevent miRNA-mRNA interac-
tions, and miRNA masking, which uses sequences com-
plementary to the miRNA binding site on the mRNA to 
form duplexes that abrogate miRNA effects (reviewed 
in [132], Fig.  4). Interestingly, endogenous RNA mole-
cules that act as miRNA sponges, sequestering miRNAs 
away from their targets, have been described [133]. For 
example, TYRP1 mRNA binds miR-16, and prevents the 
suppression of miR-16 targets, including RAB17, which 
promotes melanoma proliferation. Masking of miR-16 
binding sites on the TYRP1 mRNA with small antisense 

Fig. 3  miRNAs modulating components of the MAPK pathway in mela-
noma. Several miRNAs have been shown to regulate the MAPK pathway 
in melanoma by binding to the 3’ or 5’ UTR of various MAPK pathway 
components. These include miR-7 (targets EGFR, IGF-1R and CRAF [122]), 
miR-199b-5p (targets VEGFA and HIF1α [107]), miR-204-5p (targets VEGFA 
[182]), miR-126-3p (targets VEGFA and BRAF [182]), miR-579-3p (targets 
BRAF [123]), miR-524-5p (targets BRAF and ERK [183]), and miR-876-3p (tar-
gets ERK2 [184])
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oligonucleotides increased miR-16 activity, decreased 
RAB17 mRNA and reduced tumour growth in a xeno-
graft melanoma mouse model [134].

Conversely, miRNA expression and effects on mRNA 
targets can be restored using double-stranded oligo-
nucleotides referred to as miRNA mimics or mimetics 
(Fig. 4). For instance, transfection of melanoma cells with 
a miR-26a mimic decreased cell proliferation by induc-
ing cell cycle arrest, and inhibited cell migration and 
invasion; transfection of the mouse B16F10 melanoma 
cells with the miR-26 mimic inhibited tumour growth in 
vivo [135]. Overall, therapeutic strategies that inhibit or 
restore miRNA expression have demonstrated efficacy in 
modulating melanoma growth and progression in pre-
clinical models.

A major challenge in the therapeutic targeting of 
miRNAs is achieving delivery to precise locations, such 
as tumour regions and metastatic sites, whilst reduc-
ing nonspecific cellular uptake and consequent toxicity. 
Because miRNAs can be rapidly degraded by nucleases 
and have poor and nonspecific cellular uptake, sev-
eral modifications and delivery strategies have been 

developed and tested in vivo to circumvent these chal-
lenges [136]. These approaches must be well tolerated, 
safe and specific, and designed to minimize off-target 
effects and can include chemical modifications, organic, 
inorganic, and polymer-based non-viral delivery meth-
ods (e.g. liposomes, nanoparticles, peptide polymers, 
extracellular vesicles or exosomes) and viral vectors (e.g. 
lentiviral, retroviral, and adenoviral, Fig. 4). For example, 
antisense oligonucleotides can be modified with locked 
nucleic acids (LNAs), RNA nucleotides with a modified 
ribose moiety, to offer higher thermal stability, resistance 
to nuclease degradation and higher specificity and affin-
ity [137]. Administration of an LNA-anti-miR-21 reduced 
miR-21 expression in tumours and inhibited tumour 
growth in a B16F10 melanoma mouse model [137] and 
a LNA-modified antisense oligonucleotides (LNA-
miR-221 inhibitor) demonstrated excellent safety profile 
and anti-tumour activity in a Phase I clinical trial [138]. 
Likewise, the incorporation of mesyl phosphoramidate 
groups in miRNA-targeting antisense oligonucleotides 
has been shown to increase oligonucleotide hybridisa-
tion, stability and efficacy, when compared to equivalent 

Fig. 4  Strategies and delivery systems for miRNA-based therapies. miRNA constructs can be designed to either inhibit (antagomiRs, BlockmiRs, miRNA 
masking, miRNA sponges) or overexpress (miRNA mimics) target miRNAs. To maximise stability of miRNAs and minimise off-target effects, miRNA con-
structs can be packaged within viral or non-viral delivery systems for transport to specific tumour sites
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phosphorothioate antisense oligonucleotides [139]. In a 
melanoma mouse model, mesyl phosphoramidate-mod-
ified anti-miRs targeting miR-21, miR-17 and miR-155 
showed limited toxicity, including minimal dystrophy 
and necrosis in the liver parenchyma [140]. Moreover, 
combined targeting of all three miRNAs with the mesyl 
phosphoramidate modified antisense oligonucleotides 
was more effective compared to targeting single miRNA 
[140], demonstrating the improved efficacy and safety of 
targeting multiple miRNAs.

miRNAs packaged in vector systems have also been 
tested in melanoma. Polyethylenimine, a cationic poly-
mer, can interact electrostatically with oligonucleotides 
and can protect small RNA molecules from degradation 
whilst increasing cellular uptake [141], and polyethylen-
imine-complexed anti-miR-150 and anti-miR-638 sig-
nificantly inhibited tumour growth and metastasis in 
melanoma xenograft mouse models [142]. In addition 
to silencing miRNA expression with anti-miRs, vec-
tor systems can be utilised to deliver miRNAs to restore 
expression; delivery of lipid nanoparticles encapsulating 
miR-199-5p and miR-204-5p to xenograft mouse models 
enhanced BRAF/MEK inhibitor therapy with minimal 
adverse events [143]. Similarly, delivery of miR-21-3p 
encapsulated in gold nanoparticles increased tumour-
specific cellular uptake and synergised with anti-PD-1 
treatment to decrease tumour growth in a melanoma 
mouse model [144]. Overall, these chemical modifica-
tions and delivery systems are advancing miRNA-based 
therapies towards clinical application, by enhancing their 
stability and therapeutic efficacy while reducing toxicity 
and off-target effects.

Despite the improvements in miRNA targeting and 
delivery, to date, only a few clinical trials have investi-
gated miRNA-based therapeutics in cancer (Table  2). 
In melanoma-focussed miRNA-based clinical studies, 
research has centred on evaluating miRNAs for their 
diagnostic and prognostic potential, although none have 
yet advanced to routine clinical application. In the thera-
peutic setting, some notable candidates have emerged, 
including miR-34 [145], miR-16 [146], miR-155 [147], 
and miR-10b [148], but among these, only MRX34, a 
miR-34 mimic encapsulated in liposomal nanoparticles, 
has been evaluated in a Phase I trial in patients with 
melanoma, liver cancer, small cell lung cancer, lym-
phoma, multiple myeloma, and renal cell carcinoma 
(NCT01829971). Results indicated that three out of 85 
patients (3.5%) experienced prolonged partial responses, 
while 16 patients (19%) had stable disease; however, the 
trial was terminated due to unexpected immune-medi-
ated adverse events resulting in deaths of four patients 
[145]. Other miRNA therapeutics have been evaluated in 
clinical trials for other cancer types and are summarised 
in Table 2.

Collectively, the clinical trials summarised in Table  2 
underscore the low specificity and off-target effects of 
miRNA-based therapies, which may contribute to the 
occurrence of severe immune-related adverse events. 
Of note, many of the therapeutic trials were terminated 
or withdrawn, and only one (NCT06260774) has pro-
gressed to Phase II for patients with confirmed diagnoses 
of relapsed advanced or locally advanced solid tumours 
with no available standard therapy. The initial phase 0 
data with a single patient receiving an injection of TTX-
MC138 (nanoparticles loaded with miR-10b antagomiR) 
demonstrated uptake to bone, lung and liver metasta-
ses and selective retention of the drug in tumour tissue 
[148]. The Phase II trial is currently recruiting. This lim-
ited progress suggests minimal clinical benefit to date, 
raising concerns about the future viability of miRNA-
based therapeutics [149]. Importantly, in the context of 
melanoma, the goal of miRNA-based therapies is not to 
replace current effective treatments but to complement 
them, potentially in combination with BRAF/MEK inhib-
itors or immune checkpoint inhibitors to enhance drug 
efficacy, prolong the durability of responses, or overcome 
resistance to these therapies.

Challenges and recommendations for circulating MiRNA 
research and analyses
As previously noted, the identification of circulating 
miRNA biomarkers across various independent studies 
has shown limited consistency, with conflicting findings 
regarding their diagnostic, prognostic, and predictive 
value. Numerous reports underscore the lack of stan-
dardisation in both pre-analytical and analytical steps for 
profiling circulating miRNAs [153–158]. As discussed 
in these reports, discrepancies likely arise from differ-
ences in miRNA detection methods (e.g. RT-qPCR, 
NanoString, microarray, whole or targeted miRNA 
sequencing), the quality and type of biospecimens ana-
lysed (fresh, archival, whole blood, plasma or serum), 
and the heterogeneity of the patient and control cohorts, 
including variations in subtype, stage and treatment his-
tory. Moreover, the low abundance of secreted miRNAs, 
and differences in extraction methods, quality control, 
normalisation of miRNA data and variable statistical 
evaluation methods contribute to the limited consistency 
and hinder the broader implementation of circulating 
miRNA biomarkers.

To address the lack of standardization, the National 
Cancer Institute (NCI) recently published a best practice 
guide for blood collection and processing, specifically 
for circulating miRNA research [159]. Table  3 sum-
marises key analytical and pre-analytical considerations 
for miRNA research. It is important to note that this lack 
of standardisation extends beyond circulating miRNA 
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research to other circulating biomarkers, including cell-
free DNA and proteins [160].

Conclusions
Despite significant advancements in miRNA sequencing 
technologies and the inherent advantages of miRNAs—
such as their stability and low detection costs—research 
focused on melanoma-specific miRNAs has not trans-
lated into clinical impact. To date, only one miRNA-
based diagnostic signature (ThyraMIR v2 used in 
combination with ThyGeNEXT oncogene panel) has 
been approved to provide risk stratification for thyroid 
nodules, and only one miRNA-based therapy (MRX34) 
has progressed to a Phase I clinical trial in melanoma 
(NCT01829971), and this trial was closed early due to 

severe immune-mediated adverse events [145]. The intri-
cate regulatory functions of miRNAs remain challenging 
to fully understand, but they also underpin the significant 
prognostic and mechanistic roles of miRNAs.

As miRNA research evolves, the unique technical chal-
lenges, including selection of robust internal controls and 
understanding the influence of biological and technical 
factors, will be resolved. Only then can miRNAs be inte-
grated into multi-omics frameworks that support person-
alized treatment approaches. Additionally, conducting 
discovery and validation studies in larger, well-annotated 
patient cohorts, along with a focus on miRNA panels as 
diagnostic and prognostic biomarkers, will accelerate the 
miRNA field. Certainly, in melanoma, miRNAs show the 
greatest promise as diagnostic and prognostic tools, and 
continued efforts in clinical trials are essential to assess 
the specificity of miRNA-based biomarkers. However, 
miRNA-based therapies face significant hurdles, includ-
ing the need to mitigate off-target effects and improve 
therapeutic efficacy, and future research should also 
explore their synergistic effects with existing treatments, 
such as BRAF/MEK inhibitors and immune checkpoint 
inhibitors. A deeper understanding of miRNAs and their 
interactions will be essential to realise their potential as 
biomarkers and therapeutic targets, ultimately enhancing 
the care and outcomes of cancer patients.
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Table 3  MiRNA pre-analytical and analytical guidelines
Analytic 
framework

Guidelines

Processing 
workflows

Consider blood collection tubes, plasma/serum 
selection, prompt isolation (within 2 h) of biologi-
cal samples, consistent and validated processing 
steps, small aliquot volumes, -80 °C storage and 
limited freeze/thaws [161, 162].

Biospecimens Use of serum versus plasma can lead to diversity 
in identified miRNAs [154, 163].

Quality controls Exclude blood fractions with haemolysis as this 
will confound circulating miRNA analysis [157, 
164–169].
Haemolysis can be identified by visual inspection 
or spectrophotometric measurement of oxy-
haemoglobin absorbance at 414 nm.
Ratio of haemolysis dependent versus stable 
haemolysis independent miRNAs e.g. (miR-451a/
miR-23a-3p) provides an alternative measure of 
haemolysis [169].

Experimental 
datasets

Consult miRNA expression databases and portals 
such as ExomiRHub and exRNA to facilitate bio-
marker discovery [170, 171]. These sites integrate 
and curate individual miRNA studies and provide 
a platform to analyse miRNA transcription in the 
context of diseases such as cancer e.g. linking to 
TCGA miRNA expression data.

Discovery 
workflows

Circulating miRNA signatures vary depending on 
the chosen measurement platform [55, 172–174].
Some common platforms include:
• Targeted miRNA panels (NanoString hybridisa-
tion, RT-qPCR)
• Whole miRNA NGS profiling (small RNASeq, 
EdgeSeq or Qiaseq)
miRNA annotation should be based on a stan-
dardised database such as miRbase [175, 176].

Validation 
workflows

Validation is typically performed using single tar-
get miRNA assays. Use stable miRNAs for normali-
sation of single target assays and select optimal 
normalisation genes using algorithms such as 
Normfinder, geNORM or BestKeeper [177–179].
Other validation methodologies include RT-
qPCR, digital droplet PCR (ddPCR) or surface-
enhanced Raman scattering (SERS) [180].
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