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Abstract 

Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progres-
sion of the cancer. Recently, artificial intelligence (AI) has empowered physicians to use its powerful data processing 
and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts 
of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop 
innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incor-
porating AI into tumor drug resistance research, highlighted current AI-driven tumor drug resistance applications, 
and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature 
analysis, we systematically summarized the role of AI in tumor drug resistance research, including drug development, 
resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance pheno-
type identification, and clinical biomarker discovery. With the continuous advancement of AI technology and rigorous 
validation of clinical data, AI models are expected to fuel the development of precision oncology by improving effi-
cacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics 
data, AI models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy 
and patient survival, and provide novel perspectives and tools for oncology treatment.
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Graphical Abstract

Introduction
Tumor drug resistance refers to the phenomenon of 
tumor cells evading the effects of anticancer drugs, lead-
ing to the failure of treatments such as chemotherapy, 
targeted therapy, or immunotherapy. Due to the influence 
of tumor burden, tumor heterogeneity, tumor microen-
vironment (TME), and other factors [1], the majority of 
traditional chemotherapy and radiotherapy fail to pre-
vent the development of resistance during treatments. 
More seriously, current clinical methods for assessing 
tumor drug resistance have a significant lag effect, lead-
ing to poor therapeutic efficacy and serious toxic side 
effects for patients [2]. Notably, more than 90% of can-
cer-related deaths have been attributed to drug resist-
ance [3]. Scientists and clinicians have long attempted 
to address this challenge from multiple dimensions and 
have developed a variety of methods to predict tumor 
drug resistance, including in  vitro models [4], in  vivo 
preclinical models [5], DNA sequencing technologies 

[6], immunohistochemistry [7], and liquid biopsies [8]. 
However, each of these methods has obvious limitations, 
including high workload, limited predictive accuracy, and 
difficulty in effectively utilizing the data. In particular, 
the massive amount of data generated by clinical omics, 
pathology, and imaging poses a great challenge for direct 
processing and analysis, thus hindering their effective 
application in tumor drug resistance practice.

For the large-scale and high-precision multimodal 
medical oncology data generated by the rapid develop-
ment of high-throughput sequencing [9], mass spectrom-
etry [10], radiology [11], and testing technologies [12], 
artificial intelligence (AI) technology has already shown 
great potential in integrating, analyzing and interpret-
ing multisource tumor drug resistance data [13]. Indeed, 
by integrating multisource heterogeneous data, includ-
ing omics data, medical images, and electronic medical 
records, AI can identify the key resistance features and 
construct more accurate and comprehensive diagnostic 
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and prognostic models of tumor resistance [14] to facili-
tate cross-modal information fusion, ultimately guiding 
clinical precision oncology and personalized therapy. 
Machine learning (ML), a prominent subset of AI, relies 
on algorithms that learn from available data to construct 
models to perform specific tasks [15]. Furthermore, deep 
learning is a particularly adept form of ML at handling 
and processing massive data from genomics, transcrip-
tomics, metabolomics, proteomics, and radiomics [16]. 
For instance, Rathore et  al. [17] applied transfer learn-
ing using a convolutional neural network pre-trained 
on 1.2 million ImageNet images to extract resistance 
features from brain scans of 270 glioblastoma patients. 
This approach effectively mined resistance-related 
information linked to O6-methylguanine-DNA methyl-
transferase promoter methylation status (MGMTpms), 
achieving robust MGMTpms prediction with cross-val-
idated accuracies of 86.95%, 81.56%, and 82.43% across 
three independent cohorts.

Artificial intelligence has the potential to significantly 
advance tumor resistance practice, offering promising 
avenues for resistance prediction and the development of 
precision oncology. Given the significance of AI in tumor 
drug resistance, this review highlights the applications 
of AI in basic study and clinical practice, mainly includ-
ing guiding the development of drugs against tumor 
drug resistance, advancing drug resistance mechanisms 
discovery, driving drug sensitivity prediction, optimiz-
ing combination therapy, facilitating tumor resistant 

phenotype prediction, and accelerating biomarker dis-
covery. Additionally, we provided a practical workflow 
of AI-guided tumor resistance practice, applications and 
discussed the perspectives and challenges associated with 
its use in tumor drug resistance practice. This review 
provides novel insights into tumor resistance practice 
and precision therapy, presents a useful reference for the 
practice of combating drug resistance in clinical tumors.

Proposed feasible workflow for artificial 
intelligence‑driven tumor resistance practice
A streamlined and practical workflow is crucial to 
enhance the efficiency and accuracy of tumor drug resist-
ance evaluation and prediction. By summarizing the 
extensive literature, we propose a feasible and practical 
workflow (Fig. 1):

Tumor drug resistance data collection
Tumor drug resistance-related data collection represents 
the initial step in the AI-driven workflow, and the acqui-
sition of high-quality data is essential for advancing drug 
resistance practice. Available clinical data include patient 
demographic and clinical information [18–20], genomic 
data [21, 22], transcriptomic data [23–25], metabolomic 
data [2], proteomic data [26, 27], imaging data [28–31], 
and physiological or biochemical pathology test results 
[26, 28, 29].

Fig. 1 A feasible workflow of artificial intelligence driven-tumor drug resistance model in basic studies and clinical practice
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Preprocessing of tumor drug resistance data
Recently, massive tumor data in modern medicine have 
been rapidly increased and accumulated [32]. Multi-
modal information, including electronic health records, 
imaging reports, and genomic data, comprehensively 
covers the diagnosis and treatment process of cancer 
patients [33]. However, these data are scattered across 
different origins and systems, often containing missing 
values and outliers [34], and remain heterogeneous, pos-
ing significant challenges to data integration, analysis and 
utilize [35]. Therefore, tumor drug resistance-related data 
must undergo comprehensive preprocessing before being 
used to train AI models. This process includes several 
critical steps, such as coding of medical concepts, data 
cleaning, data standardization and normalization, and 
feature selection [36].

Tumor drug resistance modeling
Appropriate AI algorithms should be employed to 
develop diagnostic or predictive models tailored to the 
specific needs of tumor drug resistance trials. These 
models should be adept at discerning and interpret-
ing the underlying correlations and patterns within the 
resistance data. Commonly used drug resistance data 
mining methods mainly include support vector machines 
(SVM), random forest (RF), logistic regression (LR), 
and deep learning [37]. deep learning model HECTOR 
was established for predicting distant recurrence risk in 
endometrial cancer, which extracted oncological pathol-
ogy features from H&E-stained whole-slide images using 
a Vision Transformer, then integrated these features with 
image-based molecular classification and anatomical 
staging through a gating-based attention mechanism to 
generate prognostic predictions for tumors [29].

Tumor drug resistance model training and validation
Model training and validation are essential steps in apply-
ing AI to tumor drug resistance practice, ensuring that 
the models achieve optimal performance on the train-
ing datasets and exhibit robust generalization to unseen 
and unknown data. Typically, the tumor drug resistance 
datasets have been partitioned into a training set (often 
80% or 70% of the total data) and a validation set (com-
monly 20% or 30%) [38]. The training set is utilized to 
train the model, while the validation set is employed to 
evaluate its performance. Commonly used validation 
methods include cross-validation, leave-one-out cross-
validation, and k-fold cross-validation [39]. This approach 
can enhance the accuracy and generalization of a model, 
making it applicable to both basic and clinical stud-
ies on tumor drug resistance [40]. Ahn et al. [41] devel-
oped a pathology image-based deep learning classifier, 
PathoRiCH, to predict the response to platinum-based 

chemotherapy for high-grade serous ovarian cancer, 
employing pathology images from the SEV cohort for 
training and initial validation, and then utilizing images 
from the TCGA and SMC cohorts to further evaluate the 
generalization of the model.

Interpretation of tumor drug resistance results
The predictive output of AI models requires effective 
communication with healthcare professionals to ensure 
understanding and facilitate adoption [42]. To achieve 
this, it is essential to present model results in an inter-
pretable manner that allows clinicians to understand 
the basis of the drug resistance prediction. Interpretable 
machine learning models have emerged as a key tool to 
address this challenge [43]. Specifically, the calculation of 
SHAP values can elucidate the biological characteristics 
or clinical factors with significant impact on tumor drug 
resistance. Guo et al. [44] constructed a more interpret-
able prediction model for distant metastasis in ovarian 
clear cell carcinoma using six different machine learning 
techniques, and the primary tumor stage (T) was identi-
fied as a critical clinical factor influencing metastasis risk 
through SHAP analysis, which also correlated with drug 
resistance development.

Validation of tumor drug resistance models 
in experimental and clinical studies
Once models screen for potential  biomarkers or pre-
dict tumor resistance, these results must be further vali-
dated by molecular biology [45], cell biology [46], and 
cohort studies [23]. For instance, Cai et  al. [47] utilized 
six machine learning algorithms and successfully identi-
fied the core gene RAC3, which is significantly associated 
with chemoresistance and immune infiltration character-
istics of bladder cancer (BCa); Immunohistochemistry 
(IHC) staining, RT-qPCR, and Western blot were applied 
to validate the expression of RAC3 in BCa tumor tissues, 
which successfully provided potential markers for evalu-
ating BCa resistance and addressed a critical gap in the 
risk assessment of BCa patients.

Application and continuous optimization of tumor drug 
resistance models
Initial resistance models are difficult to translate directly 
into clinical practice [48]. Continuous data collection and 
model optimization are critical to ensure the accuracy of 
drug resistance prediction.

Artificial intelligence facilitates discovery of tumor 
resistance mechanism
With the development and application of artificial intel-
ligence, its enormous potential in biomedical and clinical 
fields is being continuously explored. Specifically, in basic 
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research on tumor drug resistance, AI can (1) identify 
new effective drugs against tumor resistance via facilitat-
ing the design and screening of novel drugs, predicting 
drug-target interactions [45], and identifying potential 
targets [49]; (2) elucidate the complex molecular mecha-
nisms underlying tumor resistance in tumor cells through 
large-scale omics data analysis [50]; (3) construct drug 
sensitivity prediction models to assist clinicians in assess-
ing the cytotoxicity of various drugs on tumor cells [51]; 
and (4) optimize drug combination strategies by analyz-
ing the interactions between multiple antitumor agents 
to mitigate the resistance of monotherapy (Table 1) [52].

Artificial intelligence guides anticancer drug development 
to overcome tumor resistance
AI technologies hold tremendous promise for acceler-
ating drug discovery and development. By leveraging 
machine learning and deep learning algorithms to ana-
lyze large biological and chemical datasets, AI can iden-
tify key biomarkers and molecular pathways associated 
with specific diseases or drug mechanisms of action [45], 
accelerating the drug discovery process [54], and facili-
tate rapid screening of potential drug candidates from 
large numbers of chemical compounds [53]. It is also 
capable of predicting the biological activity and safety of 
drug molecules [75], thus increasing the success rate of 
drug discovery (Fig. 2a).

(1) AI has facilitated antitumor drug discovery and 
design: AI can be applied to the design of poten-
tially effective anticancer drugs by constructing 
chemoinformatics or pharmacoinformatics models 
to predict the properties (cytotoxicity, safety, meta-
bolicity) of molecules. An advanced deep learning 
framework POLYGON was constructed via inte-
gration of variational autoencoder, reinforcement 
learning, and random forest regression models to 
embed chemical spaces and iteratively generate 
novel molecular structures. Among 32 generated 
lead compounds targeting MEK1 and mTOR, most 
significantly inhibited their activity at 1–10 µM and 
reduced tumor cell viability in  vitro experimental 
validation [53]. Additionally, AI can facilitate the 
screening of potential antitumor drugs from large 
compound libraries. For instance, Wen et  al. [54] 
developed an end-to-end deep learning framework 
combining a self-supervised graph neural network 
with a Transformer architecture. Fine-tuned on 
the BindingDB database, it screened 50 candidate 
clusters from 4,527,000 compounds, with further 
homogeneous time-resolved fluorescence assays 
identifying clusters exhibiting IC50 < 200 nM, 
accelerating cyclin-dependent kinase 12 inhibitor 

(CDK12i) discovery. Furthermore, AI models have 
been instrumental in predicting drug-target inter-
actions and assessing drug cytotoxicity, selectivity, 
and risk profiles of drugs. The BipotentR model, a 
computational tool integrating linear mixed mod-
els and feed-forward neural networks, identified 38 
immune-metabolic bifunctional regulators using 
single-cell data. Integration of experimental, bioin-
formatics and clinical validation demonstrated that 
regulator knockdown enhanced metabolic gene 
suppression and T-cell killing efficacy, with an Area 
Under the Curve (AUC) of 0.603 [45].

(2) AI has promoted the identification and screen-
ing of tumor drug resistance targets: AI can assist 
in transforming known or potential resistance-
related genes or proteins into novel therapeutic 
targets to overcome resistance to existing thera-
pies. For instance, Xiao et  al. [75] trained ridge 
regression models using drug response data from 
GDSC and transcriptome data to predict drug sen-
sitivity, validated across multiple colorectal cancer 
cohorts. Two BCL-XL inhibitors, navitoclax and 
WEHI-539, were identified and demonstrated the 
sensitivity towards high-chromosomal instability- 
colorectal cancer cells in  vitro pharmacodynamic 
screening, thereby confirming CIN as a poten-
tial therapeutic target for colorectal cancer. Zhang 
et  al. [59] employed a Bayesian model to integrate 
multi-omics data for predicting patient response to 
immune checkpoint inhibitors (ICI). They identi-
fied a stemness signature (Stem.Sig) negatively cor-
related with anti-tumor immunity and validated 20 
stemness-related genes with immuno-resistance 
properties through CRISPR screening, suggesting 
their potential as immunotherapy.

Artificial intelligence advances molecular mechanisms 
underlying tumor drug resistance
Although the advent of targeted therapies and immuno-
therapy has significantly improved the survival rates of 
patients with advanced cancer, tumor resistance remains 
a major challenge in clinical cancer treatment. Emerg-
ing strategies such as genetic testing, liquid biopsy using 
circulating tumor DNA (ctDNA) technology [8], and 
single-cell sequencing [76] have elucidated the complex 
molecular mechanisms underlying tumor drug resist-
ance. However, these approaches have generated massive 
amounts of data [56], which are challenging to accurately 
analyze and interpret using conventional statistical analy-
sis methods.

AI can capture the complex nonlinear relationships 
inherent in tumor drug resistance data and extract char-
acteristics of tumor resistance, including changes in the 
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cell cycle, TME modes [64], modes of cell death [77], 
abnormal expression of tumor resistance-related pro-
teins [60], gene regulation [66], and the mediation of 
various signaling pathways, providing valuable insights 
into the molecular mechanisms of tumor resistance 
from genomic and proteomic perspectives (Fig. 2b) [78]. 

Integrating a visible neural network (VNN) with hierar-
chical structures, backpropagation, AdamW optimizer, 
BatchNorm, and Dropout, an interpretable deep learn-
ing model NeST-VNN was established. Using the Can-
cer Multi-Protein Complexes Atlas (NeST) and data 
from GDSC and Cancer Therapeutics Response Portal 

Fig. 2 Artificial intelligence in basic research on tumor drug resistance. a AI can facilitate the design and screening of drugs against tumor 
drug resistance by predicting molecular properties, screening effective lead compounds from libraries, predicting drug-target interactions, 
and identifying potential targets. b AI can help elucidate the complex molecular mechanisms underlying drug resistance in tumor cells. c AI can 
construct drug sensitivity prediction models to assess the inhibitory effects of various drugs on tumor cells. d AI can optimize drug combinations 
and explore combination strategies by analyzing the interactions between multiple antitumor agents
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(CTRP), it analyzed 718 resistance relevant genes with 
mutations, copy number alterations, and deletions to 
uncover drug-resistance mechanisms. Based on in  vitro 
cell line screening, patient-derived xenograft (PDX) mod-
eling, clinical data, and CRISPR validation, it revealed 
that histone regulatory complexes, mediated by KAT6A, 
TBL1XR1, and RUNX1, promote S-phase entry, driv-
ing resistance of cyclin-dependent kinase 4/6 inhibitor 
(CDK4/6i) [62]. Gerratana et al. [55] employed gradient 
boosting machines to analyze baseline ctDNA data from 
610 hormone receptor-positive/HER2-negative meta-
static breast cancer patients, identifying resistance mech-
anisms of CDK4/6i, including alterations in ER, RTK, and 
cell cycle pathways.

Artificial intelligence drives drug sensitivity prediction 
and screening
AI can assist in predicting individual drug responses by 
rapidly identifying and obtaining specific sets of genes or 
genetic traits, protein profiles, and metabolic character-
istics that correlate with treatment outcomes. Numerous 
studies have established accurate, efficient, and intui-
tive drug sensitivity prediction platforms by combin-
ing tumor drug sensitivity assessment models [65] with 
AI algorithms for evaluating the cytotoxicity of various 
drugs [67], predicting the individual treatment responses, 
and providing a scientific basis for clinicians to design 
personalized and precise treatment programs (Fig. 2c).

(1) Gene expression profiling: Gene expression profil-
ing has become a widely used method for tumor 
drug sensitivity screening [79]. However, variations 
in sequencing depth across different technologies 
and laboratories, as well as batch effects and het-
erogeneity, have posed challenges for single-cell 
RNA sequencing (scRNA-seq) data analysis [80]. 
The integration of AI technology and gene expres-
sion profiling not only enhances data processing 
and model prediction accuracy but also facilitates 
a comprehensive understanding of the mechanisms 
underlying gene expression. TransCell, a two-
step deep transfer learning framework integrating 
autoencoders, transfer learning, and deep feed-for-
ward neural networks, was trained on pan-cancer 
tumor samples and validated using CellMinerCDB 
and DepMap 20Q1 data. It predicted drug sensitivi-
ties for 124 pediatric cell lines across 4686 drugs, 
identifying 29 broadly effective and cancer-specific 
agents [65].

(2) Patient-derived xenograft (PDX) model: The PDX 
model is widely considered to more accurately 
reflect tumor heterogeneity, with efficacy evalu-
ation results closely resembling those observed 

in clinical patients [81]. However, the use of the 
PDX models has been constrained by several fac-
tors: tumor implantation and expansion, as well as 
extensive in vivo drug sensitivity testing, which typ-
ically requires 10–15 months [82], and has hindered 
the application of these models in tumor resistance 
studies. AI can be subjected to assist in identifying 
factors that influence the success rate of PDX model 
establishment, such as tumor tissue processing 
methods and transplantation site selection, to opti-
mize the establishment process [83]. Furthermore, 
AI can analyze genomic and transcriptomic data 
from PDX models to reduce time consumption. For 
instance, Cotler et al. [69] developed a platform to 
accelerate ovarian cancer drug sensitivity testing, 
predicted outcomes of intraperitoneal injections for 
three second-line cytotoxic therapies, achieving an 
average AUC of 0.91, based on machine learning 
classifier with linear regression and forward–back-
ward stepwise feature selection,

(3) Single-cell drug susceptibility testing: Single-cell 
drug susceptibility testing, a method developed 
in recent years, can evaluate the sensitivity of sin-
gle cells to various antitumor drugs [84]. Cellular 
parameters obtained from single-cell cytotoxic-
ity assays can be processed as input files and fur-
ther analyzed by AI algorithms, providing deeper 
insights for clinical decision-making [85]. Addition-
ally, integrating tumor sensitivity testing with AI to 
analyze various omics data can facilitate more per-
sonalized drug selection for cancer patients in the 
era of precision oncology. Based on RF, SVM, and 
k-nearest neighbors algorithms, the first single-cell 
transcriptome-based AI model, SCATTome, was 
developed predict individual cell responses to pro-
teasome inhibitors, validated by in  vitro pharma-
codynamic screening, addressing the challenge of 
drug sensitivity heterogeneity in multiple myeloma 
[86].

(4) Organoid models: The use of organoids in tumor 
drug resistance studies has gained significant atten-
tion recently [87]. The integration of AI-driven data 
analysis can optimize quality control processes and 
culture conditions, alleviating the financial and 
technical hurdles inherently associated with orga-
noid culture [88], while simultaneously enhancing 
the efficiency and accuracy of drug sensitivity pre-
dictions. Kong et al. [67] integrated ridge regression 
with linear regression, support vector regression, 
and deep neural networks to train a model using 
transcriptomic and pharmacovigilance data from 
colorectal and bladder cancer organoids. Based on 
TCGA patient transcriptomic data, the model pre-
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dicted drug responses for 114 colorectal and 77 
bladder cancer patients, with survival analysis sig-
nificantly supporting the predictions (P = 0.014 and 
P = 0.01, respectively).

Artificial intelligence assists in optimizing combination 
therapy development
AI can integrate data from multiple biomedical sources 
[70], organize drug combination datasets [72], predict 
drug combination sensitivity, and save valuable time in 
drug combination screening [89], thereby overcoming 
tumor resistance,  addressing combinatorial explosion 
challenges, and enhancing cost-effectiveness in oncol-
ogy drug screening (Fig.  2d). scTherapy, a machine 
learning model based on LightGBM, integrated sin-
gle-cell transcriptome and drug response data to pre-
dict combination therapies for metastatic/refractory 
tumors. Following validation of flow cytometry and 
bulk cell viability assays in acute myeloid leukemia 
patient samples, 96% of predicted combinations dem-
onstrated selective efficacy or synergy [90]. Combo-
Pred combining RF, gradient boosting, and XGBoost, 
identified synergistic drug combinations with high 
selectivity against ovarian cancer. It prioritized candi-
dates like the mTOR inhibitor vistusertib and BCL2L1 
inhibitor A1155463 (HSA score 9.7) for single-cell vali-
dation, guiding preclinical oncology drug testing [72].

Meanwhile, AI models can analyze the synergistic 
mechanism of antitumor agents, thereby optimizing 
drug combinations, facilitating the identification of the 
optimal therapeutic regimen, and maximizing the ben-
efits for oncology patients. For instance, Zhou et  al. 
[73] developed prediction models using RF, XGBoost, 
and CatBoost to analyze drug combination datasets 
from DrugComb, DrugCombDB, and SYNERGxDB, 
and identified the combination of lapatinib (RTK 
inhibitor) and pazopanib (multi-kinase inhibitor) as 
potent against breast cancer by blocking the PI3K/
AKT/mTOR pathway, validated by in  vitro cytotoxic-
ity screening towards MDA-MB-231 and HCC1937 
cell. Davis et  al. [71] trained an AI model combining 
neural networks and Bayesian network propagation 
on IC50 values and RNA sequencing (RNA-seq) data 
from six DLBCL cell lines, predicting strong syn-
ergy between histone deacetylase inhibitors and JAK 
inhibitors. Experimental validation confirmed signifi-
cant synergistic effects of these combination therapy 
(p < 0.01), establishing a computational-experimental 
closed-loop framework for cancer combination ther-
apy development.

Artificial intelligence assists reduce tumor drug 
resistance in clinical oncology
Tumor drug resistance poses a significant challenge in 
clinical oncology, making studies into this phenom-
enon essential for enhancing the effectiveness of cancer 
therapies [91], improving patient outcomes [92], reduc-
ing healthcare costs, and advancing medical science. 
Recently, AI has been increasingly applied to clinical 
trials of tumor drug resistance, offering promising solu-
tions to address resistance issues. By integrating diverse 
sets, including genomic, transcriptomic, proteomic, 
imaging, and clinical data, machine learning models 
have been developed to predict patient responses to 
specific oncology drugs (Table 2) [93].

Artificial intelligence facilitates the prediction 
of tumor‑resistant phenotypes
Undeniably, AI is a powerful tool for processing and 
analyzing patient genomic data [22] and clinical infor-
mation [113]. Its introduction could assist physicians 
in identifying patients at higher risk of developing 
tumor resistance. Tumor drug resistance is influenced 
by multiple factors, such as gene mutations [101] and 
alterations in gene expression [75], which contribute to 
the tumor’s increased tolerance to therapeutic agents. 
AI can predict drug resistance phenotypes by system-
atically analyzing large-scale clinical information and 
genomic data (Fig.  3a). Furthermore, factors such as 
tumor patients’ genetic background and mutations, 
weight, gender, age, and lifestyle habits may influence 
treatment outcomes [114], and AI contributed to clini-
cians systematically evaluating patients’ drug resistance 
and predicting resistance-prone populations or cohorts 
[115].

AI can fully mine tumor resistance-related data from 
vast amounts of data in single-cell omics to guide tumor 
drug resistance. A drug response prediction model PER-
CEPTION using transfer learning and elastic net regu-
larization, predicted responses of transcriptional clones 
within tumors, with the most resistant clone indicat-
ing overall patient response. It stratified responders and 
non-responders in multiple myeloma (AUC = 0.83) and 
breast cancer (AUC = 0.776) experiments [116]. Liu et al. 
[2] mined and analyzed HCT-116 colon cancer single-cell 
mass spectrometry metabolomic data, then used RF, arti-
ficial neural networks, and penalized LR to predict drug 
resistance in individual cells, achieving 86.5% accuracy 
in validation, highlighting its clinical potential. Goldstein 
et  al. [94] developed an AI model with SVM, RF, and 
XGBoost, classify drug resistance and metastatic poten-
tial with > 95% accuracy using lung cancer cell features 
(size, granularity, fluorescence intensity).
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Additionally, liquid biopsy samples can provide 
genomic, transcriptomic, epigenomic, proteomic, 
and metabolomic information about tumor resistance 
through omics analysis [8]. AI can efficiently integrate 
and process these multidimensional datasets, enhancing 
assay precision and supporting more informed diagnostic 
and therapeutic decisions. Based on plasma proteomics 
data of 184 non-small cell lung cancer patients, Shaked 
et al. used supervised learning, and identified resistance-
associated proteins and combined key clinical param-
eters to predict response of ICB therapy. Survival analysis 
revealed risk ratios of 4.5 (CI 2.07–9.77; p < 0.0001) for 
overall survival and 2.27 (CI 1.7–4.03; p = 0.004) for pro-
gression-free survival, enabling patient stratification and 
dynamic monitoring [117].

Artificial intelligence accelerates discovery of tumor 
resistance biomarkers
In addition to tumor drug resistance phenotypes, there 
is an urgent clinical need for specific and highly sensi-
tive biomarkers to monitor tumor progression and resist-
ance [118]. By leveraging AI-based bioinformatics tools 
and computational biology models, the gene expression 
levels of proto-oncogenes and oncogenes [99], enzyme 
activity, and metabolic reprogramming [103] in patients’ 
tumors can be thoroughly analyzed to screen for molecu-
lar markers that are closely related to tumor drug resist-
ance, providing reliable evidence for the progression, 
prediction [109], and prognosis [111], while also provid-
ing scientific rationale for the development of novel drug 
resistance detection technologies and therapeutic strate-
gies (Fig. 3b).

The discovery of predictive biomarkers is critical for 
stratifying patients into distinct susceptibility subtypes 

and enabling personalized treatment [119]. AI can assist 
physicians in identifying resistance genes [106] or pro-
teins [107] through minimally invasive manipulation, 
thereby enhancing patient risk stratification and clinical 
trial selection. Based on tissue information normalization 
and deep learning with a fully connected neural network, 
TINDL was established and trained on RMA-normalized 
data from 958 GDSC cancer cell lines, and tested on 
TCGA primary tumor RNA-seq data. It identified key 
resistant genes (such as SLFN11, RPS6, RPL13) and path-
ways, validated by siRNA knockdown experiments [95]. 
Lee et al. [25] used LR and network propagation to ana-
lyze TME interactions, predicting ICI responses in mela-
noma, lung, bladder, and gastric cancers, and achieved a 
median AUC of 0.79 across 11 ICI cohorts, with single-
cell experiments and enrichment analyses identifying 
resistance-associated pathways as potential combination 
therapy targets.

Prognostic biomarkers are valuable tools for monitor-
ing cancer progression and treatment efficacy, allowing 
physicians to make timely adjustments to treatment regi-
mens [120]. By integrating single-cell and multi-patient 
sample sequencing [100] and leveraging AI to explore the 
relationship between specific tumor cell subpopulations 
and patient prognosis, disease progression and outcome 
can be predicted, providing novel insights for clinical 
diagnosis and treatment of cancer [105]. An AI model 
named AE-SDN, combining autoencoders and deep neu-
ral networks, extracted key features from tumor RNA-
seq data into a Cox regression layer to output patient 
risk scores and identify immune-, oncogenic-, and tumor 
suppressor-related genes. Compared to  CD3+/CD8+ 
T-cell-density-based immune scores, AE-SDN improved 
predictive power by > 20% [111]. Guan et  al. [103] used 

Fig. 3 Artificial intelligence-guided tumor drug clinical practice. a AI models predict patient responses to specific drugs and identify 
and differentiate individuals with distinct drug-resistant phenotypes. b AI models screen predictive and prognostic biomarkers associated with drug 
resistance
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support vector machine-recursive feature elimination 
to screen PYGL, a prognostic metabolic gene, from 858 
KEGG pathway genes and single-cell data. A xenograft 
model confirmed that PYGL knockdown inhibited tumor 
growth, supporting PYGL as a potential metabolic ther-
apy target.

Available online tumor drug resistance databases 
or servers
Available, easy-to-use tumor resistance databases shorten 
the gap between basic research and clinical application, 
allowing physicians to quickly obtain therapeutic refer-
ences and guidance based on laboratory data, contrib-
uting to precision oncology decision-making (Table  3) 
[121]. In addition to The Cancer Genome Atlas (TCGA) 
(https:// www. cancer. gov/ tcga) [122], based on the aggre-
gation of drug sensitivity data from nearly 75,000 experi-
ments, Yang et  al. [123] developed the GDSC database 

(https:// www. cance rrxge ne. org/), which can identify 
molecular biomarkers of drug sensitivity by querying for 
specific anticancer drugs or cancer genes, facilitating the 
discovery of novel biomarkers for cancer therapy. The 
DRMref database (https:// ccsm. uth. edu/ DRMref/) [124], 
which analyzed tumor cell composition, intra-tumor het-
erogeneity, and epithelial-mesenchymal transition scores, 
provides a comprehensive characterization of drug resist-
ance mechanisms and supports the development of drug 
combinations and innovative therapeutic targets. The 
Cancer Therapeutics Response Portal (CTRP) (http:// 
porta ls. broad insti tute. org/ ctrp/) [125], links genetic and 
cellular characteristics of 860 cancer cell lines to their 
sensitivity to 481 small molecule probes and drugs, accel-
erating the discovery of patient-matched therapies. ncR-
NADrug (http:// www. jiang lab. cn/ ncRNA Drug) [126] 
catalogs non-coding RNAs (ncRNAs) associated with 
drug resistance and targets, and predicts drug-ncRNA 

Table 3 Available databases on tumor drug resistance

Databases Websites Functions Ref

DRMref https:// ccsm. uth. edu/ DRMref/ DRMref provides comprehensive characterization of drug resistance mechanisms 
using single-cell data obtained from drug treatment settings

[124]

DRESIS https:// idrbl ab. org/ dresis/ DRESIS is a comprehensive list that characterizes drug-resistant diseases and all 
types of resistance mechanisms

[128]

GDSC https:// www. cance rrxge ne. org/ GDSC integrates large-scale drug susceptibility and genomic datasets to aid 
in the identification of novel biomarkers for cancer therapy

[123]

CTRP http:// porta ls. broad insti tute. org/ ctrp/ CTRP links genetic, genealogical and cellular characteristics of cancer cell lines 
to drug sensitivity to accelerate the discovery of patient-matched cancer therapies

[125]

CTR-DB 2.0 http:// ctrdb. ncpsb. org. cn With gene set enrichment and tumor microenvironment analysis, CTR-DB 2.0 
assists in elucidating tumor resistance mechanisms and identifying potential com-
bination therapies and their predictive biomarkers

[129]

CancerDR http:// crdd. osdd. net/ ragha va/ cance rdr CancerDR offers pharmacological data for 148 anticancer drugs across 952 cancer 
cell lines, aiding in the identification of genetic alterations in drug target-encoding 
genes

[130]

ncRNADrug http:// www. jiang lab. cn/ ncRNA Drug ncRNADrug enables the prediction of drug-ncRNA associations based on ncRNA 
expression profiles, aiding drug development

[126]

MdrDB https:// quant um. tence nt. com/ mdrdb/ MdrDB captures the biochemical impact of mutations on protein–ligand affinity, 
providing insights into mutation-driven drug resistance, combination therapy 
development, and novel drug discovery

[131]

CCLE https:// porta ls. broad insti tute. org/ ccle CCLE integrates pharmacological data for 24 anticancer drugs across 479 cell lines, 
enabling the identification of predictors for drug sensitivity

[132]

TCGA https:// www. cancer. gov/ tcga TCGA provides comprehensive genomic, epigenomic, transcriptomic, proteomic, 
and clinical data to support cancer diagnosis, treatment, and prevention

[122]

PharmGKB https:// www. pharm gkb. org PharmGKB is a pharmacogenomics database containing genetic information 
on tumor drug resistance, aiding the identification of factors influencing individual-
ized therapy

[133]

COSMIC https:// cancer. sanger. ac. uk/ cosmic COSMIC provides data on somatic mutations in cancer, enabling the assessment 
of their impact on disease progression

[134]

OncoKB https:// www. oncokb. org OncoKB is a cancer genome database that offers information on cancer-related 
mutations, drug resistance, and treatment response

[135]

ScDrugAct http:// bio- bigda ta. hrbmu. edu. cn/ scDru gAct ScDrugAct dissects cellular heterogeneity and the tumor microenvironment, shed-
ding light on mechanisms of drug action and resistance

[127]

CancerTracer http:// cailab. labsh are. cn/ cance rtrac er CancerTracer facilitates tracking and characterization of tumor evolution in indi-
vidual patients, aiding the identification of predictive biomarkers for personalized 
cancer therapy

[136]
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interactions to support drug development and cancer 
treatment. ScDrugAct (http:// bio- bigda ta. hrbmu. edu. cn/ 
scDru gAct) [127] compiles 17,274 drug-related genes and 
276,559 associations between over 10,000 drugs and 53 
cell types, linking drugs, genes, and cells to support cell 
type-specific therapies and the identification of therapeu-
tic biomarkers.

Current challenges and future perspectives
AI models outperform traditional methods in data inte-
gration, handling complex data, and adaptability, offering 
deeper insights into biomedical data for clinical deci-
sion-making and drug development [137, 138]. However, 
their effectiveness depends on high-quality data [139], 
and their "black-box" nature poses interpretability chal-
lenges, particularly with complex omics data and resist-
ance mechanisms [61]. Therefore, standardized data 
management and acquirement is essential to ensure data 
quality and consistency [140], while efforts should prior-
itize enhancing model interpretability and visualization 
[141]. Moving forward, multimodal AI models should 
be utilized to integrate diverse data sources, emphasiz-
ing key interactions between oncological data modalities 
to boost predictive accuracy for resistance. Moreover, 
strengthening collaboration among computer scientists 
[142], biologists [143], clinicians, and pharmacologists 
[144] will be vital for translating research into practical 
applications and advancing precision oncology.

Quality and standardization of tumor drug resistance data
The scarcity of high-quality and suitable datasets is a 
major challenge for the application of AI algorithms 
to tumor drug resistance [145]. Currently, AI models 
based on in vitro cancer cell lines show limited transla-
tional potential in forecasting clinical drug responses in 
real-world scenarios [146]. Although many studies have 
moved towards AI models using clinical data, appropri-
ate resistance datasets remain limited [139]. Even in large 
databases such as TCGA, clinical drug response data are 
typically sparse [95].

The integrity and comprehensiveness of clinical data 
are fundamental to clinical research and evidence-based 
decision-making, necessitating rigorous quality control 
and validation protocols [147]. Effective integration and 
processing of heterogeneous clinical data are critical for 
ensuring the reliability of AI models [148]. In particular, 
the National Cancer Institute Genomic Data Commons 
(GDC) dataset, which integrated data from multiple can-
cer genome programs, provided comprehensive clini-
cal drug response data alongside multi-omics profiles. 
By processing patient-derived molecular data through 
standardized GDC workflows, researchers can easily 

achieve data normalization, thereby enhancing the qual-
ity of tumor resistance modeling [149].

Interpretable and transparent AI models urgently needed 
in clinical oncology
Tumor drug resistance prediction models based on AI 
algorithms are often considered “black box” models due 
to the difficulty of explaining how these models actu-
ally arrive at their decisions [43]. When faced with the 
challenge of balancing performance and interpretability, 
scientists often prioritize performance metrics such as 
accuracy, precision, and recall. However, healthcare deci-
sions require weighing complex, sometimes conflicting 
data, and clinicians value the interpretability and practi-
cal applicability of tumor resistance models [150].

Enhancing the interpretability of models can assist 
physicians in gaining a deeper understanding of the 
molecular basis of drug resistance toward tumor and 
developing more effective oncotherapy accordingly [43], 
potentially improving the feasibility and practicability of 
drug resistance models in clinical [62]. Zhao et  al. [61] 
developed a series of “visible” neural network (VNN) 
models that linked genetic alterations to drug responses, 
utilizing knowledge maps of biological components and 
functions to guide the internal architecture of the model. 
Unlike traditional “black box” neural networks, VNN 
predictions of biomedical outcomes could be mapped to 
changes in molecular mechanisms and pathways, thereby 
enhancing the interpretability of clinical decisions. 
Ogunleye et  al. [139] constructed a patient-interpret-
able machine learning model, where expression levels 
of selected miRNAs were nonlinearly combined by the 
CART algorithm in a correlated manner, supporting the 
model’s predictive outcomes.

Emerging multimodal artificial intelligence models 
for enhanced robustness and accuracy in tumor drug 
resistance
Clinical data sources are massive and diverse, encom-
passing a wide range of data types and variables, such as 
patient charts, hospital records, laboratory test results, 
radiological imaging, histologic and histopathologic 
analyses, genomic profiling, and electronic health records 
[110]. These sources contain structured data, includ-
ing clinical tests [151], semi-structured data like patient 
questionnaires [152], and unstructured data, such as phy-
sician’s medical records [153].

The integration of such multimodal data has signifi-
cantly enhanced the robustness and accuracy of diag-
nostic or prognostic models, driving advancements in AI 
applications within clinical settings [154]. MOMLN, an 
advanced multimodal and multi-omics machine learn-
ing integration framework, has demonstrated exceptional 

http://bio-bigdata.hrbmu.edu.cn/scDrugAct
http://bio-bigdata.hrbmu.edu.cn/scDrugAct
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predictive performance by incorporating comprehensive 
input data, including clinical characteristics, DNA muta-
tion profiles, gene expression signatures, TME features, 
and molecular pathway information. This framework 
achieved a remarkable mean AUC of 0.989 in classifying 
drug response types among 147 breast cancer patients 
[97].

Concluding remarks
Artificial intelligence (AI), with its powerful data pro-
cessing and analysis capabilities, has shown significant 
potential in both basic and clinical studies on tumor 
resistance. By analyzing clinical data and omics data, AI 
provides innovative perspectives and tools to understand 
the onset and progression of tumor drug resistance, driv-
ing advances in cancer prediction, treatment, and prog-
nosis. Its successful application not only underscores the 
potential of AI in the medical field, but also points to new 
development directions for precision oncology.

However, the application of AI technology in tumor 
resistance practice still faces several major challenges, 
particularly the incompleteness and bias of medical data, 
model interpretability, and robustness. To tackle these 
recent challenges, it is essential to implement standard-
ized protocols for data collection, integration, process-
ing, analyzing, modelling and validation, and to focus on 
developing robust, interpretable AI systems. The adop-
tion of emerging technologies, particularly multimodal 
AI models, can greatly advance tumor drug resistance 
research by enabling more effective synthesis and analy-
sis of diverse data types. Clinical validation of AI models 
is also crucial to ensure their reliable application in real-
world studies.

Despite these above challenges, AI is poised to play 
an increasingly pivotal role in mitigating tumor drug 
resistance in clinical practice as technology continues to 
advance and more comprehensive clinical data becomes 
available. In the near future, AI is expected to predict 
and combat tumor drug resistance with higher efficiency 
and precision and become an integral part of every stage 
of tumor screening strategy, patient management, and 
prognosis, thus realizing personalized treatment and pre-
cision oncology.
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