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precision therapies in tumor drug resistance:
recent advances, opportunities, and challenges
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Abstract

Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progres-
sion of the cancer. Recently, artificial intelligence (Al) has empowered physicians to use its powerful data processing
and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts

of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop
innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incor-
porating Al into tumor drug resistance research, highlighted current Al-driven tumor drug resistance applications,
and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature
analysis, we systematically summarized the role of Al in tumor drug resistance research, including drug development,
resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance pheno-
type identification, and clinical biomarker discovery. With the continuous advancement of Al technology and rigorous
validation of clinical data, Al models are expected to fuel the development of precision oncology by improving effi-
cacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics
data, Al models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy
and patient survival, and provide novel perspectives and tools for oncology treatment.
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Introduction

Tumor drug resistance refers to the phenomenon of
tumor cells evading the effects of anticancer drugs, lead-
ing to the failure of treatments such as chemotherapy,
targeted therapy, or immunotherapy. Due to the influence
of tumor burden, tumor heterogeneity, tumor microen-
vironment (TME), and other factors [1], the majority of
traditional chemotherapy and radiotherapy fail to pre-
vent the development of resistance during treatments.
More seriously, current clinical methods for assessing
tumor drug resistance have a significant lag effect, lead-
ing to poor therapeutic efficacy and serious toxic side
effects for patients [2]. Notably, more than 90% of can-
cer-related deaths have been attributed to drug resist-
ance [3]. Scientists and clinicians have long attempted
to address this challenge from multiple dimensions and
have developed a variety of methods to predict tumor
drug resistance, including in vitro models [4], in vivo
preclinical models [5], DNA sequencing technologies
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[6], immunohistochemistry [7], and liquid biopsies [8].
However, each of these methods has obvious limitations,
including high workload, limited predictive accuracy, and
difficulty in effectively utilizing the data. In particular,
the massive amount of data generated by clinical omics,
pathology, and imaging poses a great challenge for direct
processing and analysis, thus hindering their effective
application in tumor drug resistance practice.

For the large-scale and high-precision multimodal
medical oncology data generated by the rapid develop-
ment of high-throughput sequencing [9], mass spectrom-
etry [10], radiology [11], and testing technologies [12],
artificial intelligence (AI) technology has already shown
great potential in integrating, analyzing and interpret-
ing multisource tumor drug resistance data [13]. Indeed,
by integrating multisource heterogeneous data, includ-
ing omics data, medical images, and electronic medical
records, Al can identify the key resistance features and
construct more accurate and comprehensive diagnostic
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and prognostic models of tumor resistance [14] to facili-
tate cross-modal information fusion, ultimately guiding
clinical precision oncology and personalized therapy.
Machine learning (ML), a prominent subset of Al relies
on algorithms that learn from available data to construct
models to perform specific tasks [15]. Furthermore, deep
learning is a particularly adept form of ML at handling
and processing massive data from genomics, transcrip-
tomics, metabolomics, proteomics, and radiomics [16].
For instance, Rathore et al. [17] applied transfer learn-
ing using a convolutional neural network pre-trained
on 1.2 million ImageNet images to extract resistance
features from brain scans of 270 glioblastoma patients.
This approach effectively mined resistance-related
information linked to O6-methylguanine-DNA methyl-
transferase promoter methylation status (MGMTpms),
achieving robust MGMTpms prediction with cross-val-
idated accuracies of 86.95%, 81.56%, and 82.43% across
three independent cohorts.

Artificial intelligence has the potential to significantly
advance tumor resistance practice, offering promising
avenues for resistance prediction and the development of
precision oncology. Given the significance of Al in tumor
drug resistance, this review highlights the applications
of Al in basic study and clinical practice, mainly includ-
ing guiding the development of drugs against tumor
drug resistance, advancing drug resistance mechanisms
discovery, driving drug sensitivity prediction, optimiz-
ing combination therapy, facilitating tumor resistant
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phenotype prediction, and accelerating biomarker dis-
covery. Additionally, we provided a practical workflow
of Al-guided tumor resistance practice, applications and
discussed the perspectives and challenges associated with
its use in tumor drug resistance practice. This review
provides novel insights into tumor resistance practice
and precision therapy, presents a useful reference for the
practice of combating drug resistance in clinical tumors.

Proposed feasible workflow for artificial
intelligence-driven tumor resistance practice

A streamlined and practical workflow is crucial to
enhance the efficiency and accuracy of tumor drug resist-
ance evaluation and prediction. By summarizing the
extensive literature, we propose a feasible and practical
workflow (Fig. 1):

Tumor drug resistance data collection

Tumor drug resistance-related data collection represents
the initial step in the Al-driven workflow, and the acqui-
sition of high-quality data is essential for advancing drug
resistance practice. Available clinical data include patient
demographic and clinical information [18—20], genomic
data [21, 22], transcriptomic data [23-25], metabolomic
data [2], proteomic data [26, 27], imaging data [28-31],
and physiological or biochemical pathology test results
[26, 28, 29].
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Fig. 1 A feasible workflow of artificial intelligence driven-tumor drug resistance model in basic studies and clinical practice
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Preprocessing of tumor drug resistance data

Recently, massive tumor data in modern medicine have
been rapidly increased and accumulated [32]. Multi-
modal information, including electronic health records,
imaging reports, and genomic data, comprehensively
covers the diagnosis and treatment process of cancer
patients [33]. However, these data are scattered across
different origins and systems, often containing missing
values and outliers [34], and remain heterogeneous, pos-
ing significant challenges to data integration, analysis and
utilize [35]. Therefore, tumor drug resistance-related data
must undergo comprehensive preprocessing before being
used to train AI models. This process includes several
critical steps, such as coding of medical concepts, data
cleaning, data standardization and normalization, and
feature selection [36].

Tumor drug resistance modeling

Appropriate Al algorithms should be employed to
develop diagnostic or predictive models tailored to the
specific needs of tumor drug resistance trials. These
models should be adept at discerning and interpret-
ing the underlying correlations and patterns within the
resistance data. Commonly used drug resistance data
mining methods mainly include support vector machines
(SVM), random forest (RF), logistic regression (LR),
and deep learning [37]. deep learning model HECTOR
was established for predicting distant recurrence risk in
endometrial cancer, which extracted oncological pathol-
ogy features from H&E-stained whole-slide images using
a Vision Transformer, then integrated these features with
image-based molecular classification and anatomical
staging through a gating-based attention mechanism to
generate prognostic predictions for tumors [29].

Tumor drug resistance model training and validation

Model training and validation are essential steps in apply-
ing Al to tumor drug resistance practice, ensuring that
the models achieve optimal performance on the train-
ing datasets and exhibit robust generalization to unseen
and unknown data. Typically, the tumor drug resistance
datasets have been partitioned into a training set (often
80% or 70% of the total data) and a validation set (com-
monly 20% or 30%) [38]. The training set is utilized to
train the model, while the validation set is employed to
evaluate its performance. Commonly used validation
methods include cross-validation, leave-one-out cross-
validation, and k-fold cross-validation [39]. This approach
can enhance the accuracy and generalization of a model,
making it applicable to both basic and clinical stud-
ies on tumor drug resistance [40]. Ahn et al. [41] devel-
oped a pathology image-based deep learning classifier,
PathoRiCH, to predict the response to platinum-based
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chemotherapy for high-grade serous ovarian cancer,
employing pathology images from the SEV cohort for
training and initial validation, and then utilizing images
from the TCGA and SMC cohorts to further evaluate the
generalization of the model.

Interpretation of tumor drug resistance results

The predictive output of Al models requires effective
communication with healthcare professionals to ensure
understanding and facilitate adoption [42]. To achieve
this, it is essential to present model results in an inter-
pretable manner that allows clinicians to understand
the basis of the drug resistance prediction. Interpretable
machine learning models have emerged as a key tool to
address this challenge [43]. Specifically, the calculation of
SHAP values can elucidate the biological characteristics
or clinical factors with significant impact on tumor drug
resistance. Guo et al. [44] constructed a more interpret-
able prediction model for distant metastasis in ovarian
clear cell carcinoma using six different machine learning
techniques, and the primary tumor stage (T) was identi-
fied as a critical clinical factor influencing metastasis risk
through SHAP analysis, which also correlated with drug
resistance development.

Validation of tumor drug resistance models

in experimental and clinical studies

Once models screen for potential biomarkers or pre-
dict tumor resistance, these results must be further vali-
dated by molecular biology [45], cell biology [46], and
cohort studies [23]. For instance, Cai et al. [47] utilized
six machine learning algorithms and successfully identi-
fied the core gene RAC3, which is significantly associated
with chemoresistance and immune infiltration character-
istics of bladder cancer (BCa); Immunohistochemistry
(IHC) staining, RT-qPCR, and Western blot were applied
to validate the expression of RAC3 in BCa tumor tissues,
which successfully provided potential markers for evalu-
ating BCa resistance and addressed a critical gap in the
risk assessment of BCa patients.

Application and continuous optimization of tumor drug
resistance models

Initial resistance models are difficult to translate directly
into clinical practice [48]. Continuous data collection and
model optimization are critical to ensure the accuracy of
drug resistance prediction.

Artificial intelligence facilitates discovery of tumor
resistance mechanism

With the development and application of artificial intel-
ligence, its enormous potential in biomedical and clinical
fields is being continuously explored. Specifically, in basic
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research on tumor drug resistance, Al can (1) identify
new effective drugs against tumor resistance via facilitat-
ing the design and screening of novel drugs, predicting
drug-target interactions [45], and identifying potential
targets [49]; (2) elucidate the complex molecular mecha-
nisms underlying tumor resistance in tumor cells through
large-scale omics data analysis [50]; (3) construct drug
sensitivity prediction models to assist clinicians in assess-
ing the cytotoxicity of various drugs on tumor cells [51];
and (4) optimize drug combination strategies by analyz-
ing the interactions between multiple antitumor agents
to mitigate the resistance of monotherapy (Table 1) [52].

Artificial intelligence guides anticancer drug development
to overcome tumor resistance

Al technologies hold tremendous promise for acceler-
ating drug discovery and development. By leveraging
machine learning and deep learning algorithms to ana-
lyze large biological and chemical datasets, Al can iden-
tify key biomarkers and molecular pathways associated
with specific diseases or drug mechanisms of action [45],
accelerating the drug discovery process [54], and facili-
tate rapid screening of potential drug candidates from
large numbers of chemical compounds [53]. It is also
capable of predicting the biological activity and safety of
drug molecules [75], thus increasing the success rate of
drug discovery (Fig. 2a).

(1) AI has facilitated antitumor drug discovery and
design: AI can be applied to the design of poten-
tially effective anticancer drugs by constructing
chemoinformatics or pharmacoinformatics models
to predict the properties (cytotoxicity, safety, meta-
bolicity) of molecules. An advanced deep learning
framework POLYGON was constructed via inte-
gration of variational autoencoder, reinforcement
learning, and random forest regression models to
embed chemical spaces and iteratively generate
novel molecular structures. Among 32 generated
lead compounds targeting MEK1 and mTOR, most
significantly inhibited their activity at 1-10 pM and
reduced tumor cell viability in vitro experimental
validation [53]. Additionally, AI can facilitate the
screening of potential antitumor drugs from large
compound libraries. For instance, Wen et al. [54]
developed an end-to-end deep learning framework
combining a self-supervised graph neural network
with a Transformer architecture. Fine-tuned on
the BindingDB database, it screened 50 candidate
clusters from 4,527,000 compounds, with further
homogeneous time-resolved fluorescence assays
identifying clusters exhibiting IC50<200 nM,
accelerating cyclin-dependent kinase 12 inhibitor
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(CDK12i) discovery. Furthermore, Al models have
been instrumental in predicting drug-target inter-
actions and assessing drug cytotoxicity, selectivity,
and risk profiles of drugs. The BipotentR model, a
computational tool integrating linear mixed mod-
els and feed-forward neural networks, identified 38
immune-metabolic bifunctional regulators using
single-cell data. Integration of experimental, bioin-
formatics and clinical validation demonstrated that
regulator knockdown enhanced metabolic gene
suppression and T-cell killing efficacy, with an Area
Under the Curve (AUC) of 0.603 [45].

(2) AI has promoted the identification and screen-
ing of tumor drug resistance targets: Al can assist
in transforming known or potential resistance-
related genes or proteins into novel therapeutic
targets to overcome resistance to existing thera-
pies. For instance, Xiao et al. [75] trained ridge
regression models using drug response data from
GDSC and transcriptome data to predict drug sen-
sitivity, validated across multiple colorectal cancer
cohorts. Two BCL-XL inhibitors, navitoclax and
WEHI-539, were identified and demonstrated the
sensitivity towards high-chromosomal instability-
colorectal cancer cells in vitro pharmacodynamic
screening, thereby confirming CIN as a poten-
tial therapeutic target for colorectal cancer. Zhang
et al. [59] employed a Bayesian model to integrate
multi-omics data for predicting patient response to
immune checkpoint inhibitors (ICI). They identi-
fied a stemness signature (Stem.Sig) negatively cor-
related with anti-tumor immunity and validated 20
stemness-related genes with immuno-resistance
properties through CRISPR screening, suggesting
their potential as immunotherapy.

Artificial intelligence advances molecular mechanisms
underlying tumor drug resistance
Although the advent of targeted therapies and immuno-
therapy has significantly improved the survival rates of
patients with advanced cancer, tumor resistance remains
a major challenge in clinical cancer treatment. Emerg-
ing strategies such as genetic testing, liquid biopsy using
circulating tumor DNA (ctDNA) technology [8], and
single-cell sequencing [76] have elucidated the complex
molecular mechanisms underlying tumor drug resist-
ance. However, these approaches have generated massive
amounts of data [56], which are challenging to accurately
analyze and interpret using conventional statistical analy-
sis methods.

Al can capture the complex nonlinear relationships
inherent in tumor drug resistance data and extract char-
acteristics of tumor resistance, including changes in the
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a. Al guides the development of anticancer drugs to overcome tumor resistance
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Fig. 2 Artificial intelligence in basic research on tumor drug resistance. a Al can facilitate the design and screening of drugs against tumor

drug resistance by predicting molecular properties, screening effective lead compounds from libraries, predicting drug-target interactions,

and identifying potential targets. b Al can help elucidate the complex molecular mechanisms underlying drug resistance in tumor cells. ¢ Al can
construct drug sensitivity prediction models to assess the inhibitory effects of various drugs on tumor cells. d Al can optimize drug combinations
and explore combination strategies by analyzing the interactions between multiple antitumor agents

cell cycle, TME modes [64], modes of cell death [77],
abnormal expression of tumor resistance-related pro-
teins [60], gene regulation [66], and the mediation of
various signaling pathways, providing valuable insights
into the molecular mechanisms of tumor resistance
from genomic and proteomic perspectives (Fig. 2b) [78].

Integrating a visible neural network (VNN) with hierar-
chical structures, backpropagation, AdamW optimizer,
BatchNorm, and Dropout, an interpretable deep learn-
ing model NeST-VNN was established. Using the Can-
cer Multi-Protein Complexes Atlas (NeST) and data
from GDSC and Cancer Therapeutics Response Portal
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(CTRP), it analyzed 718 resistance relevant genes with
mutations, copy number alterations, and deletions to
uncover drug-resistance mechanisms. Based on in vitro
cell line screening, patient-derived xenograft (PDX) mod-
eling, clinical data, and CRISPR validation, it revealed
that histone regulatory complexes, mediated by KAT6A,
TBL1XR1, and RUNXI1, promote S-phase entry, driv-
ing resistance of cyclin-dependent kinase 4/6 inhibitor
(CDK4/6i) [62]. Gerratana et al. [55] employed gradient
boosting machines to analyze baseline ctDNA data from
610 hormone receptor-positive/HER2-negative meta-
static breast cancer patients, identifying resistance mech-
anisms of CDK4/6i, including alterations in ER, RTK, and
cell cycle pathways.

Artificial intelligence drives drug sensitivity prediction

and screening

Al can assist in predicting individual drug responses by
rapidly identifying and obtaining specific sets of genes or
genetic traits, protein profiles, and metabolic character-
istics that correlate with treatment outcomes. Numerous
studies have established accurate, efficient, and intui-
tive drug sensitivity prediction platforms by combin-
ing tumor drug sensitivity assessment models [65] with
AT algorithms for evaluating the cytotoxicity of various
drugs [67], predicting the individual treatment responses,
and providing a scientific basis for clinicians to design
personalized and precise treatment programs (Fig. 2¢).

(1) Gene expression profiling: Gene expression profil-
ing has become a widely used method for tumor
drug sensitivity screening [79]. However, variations
in sequencing depth across different technologies
and laboratories, as well as batch effects and het-
erogeneity, have posed challenges for single-cell
RNA sequencing (scRNA-seq) data analysis [80].
The integration of Al technology and gene expres-
sion profiling not only enhances data processing
and model prediction accuracy but also facilitates
a comprehensive understanding of the mechanisms
underlying gene expression. TransCell, a two-
step deep transfer learning framework integrating
autoencoders, transfer learning, and deep feed-for-
ward neural networks, was trained on pan-cancer
tumor samples and validated using CellMinerCDB
and DepMap 20Q1 data. It predicted drug sensitivi-
ties for 124 pediatric cell lines across 4686 drugs,
identifying 29 broadly effective and cancer-specific
agents [65].

(2) Patient-derived xenograft (PDX) model: The PDX
model is widely considered to more accurately
reflect tumor heterogeneity, with efficacy evalu-
ation results closely resembling those observed

3)

(4)
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in clinical patients [81]. However, the use of the
PDX models has been constrained by several fac-
tors: tumor implantation and expansion, as well as
extensive in vivo drug sensitivity testing, which typ-
ically requires 10—15 months [82], and has hindered
the application of these models in tumor resistance
studies. Al can be subjected to assist in identifying
factors that influence the success rate of PDX model
establishment, such as tumor tissue processing
methods and transplantation site selection, to opti-
mize the establishment process [83]. Furthermore,
Al can analyze genomic and transcriptomic data
from PDX models to reduce time consumption. For
instance, Cotler et al. [69] developed a platform to
accelerate ovarian cancer drug sensitivity testing,
predicted outcomes of intraperitoneal injections for
three second-line cytotoxic therapies, achieving an
average AUC of 0.91, based on machine learning
classifier with linear regression and forward—back-
ward stepwise feature selection,

Single-cell drug susceptibility testing: Single-cell
drug susceptibility testing, a method developed
in recent years, can evaluate the sensitivity of sin-
gle cells to various antitumor drugs [84]. Cellular
parameters obtained from single-cell cytotoxic-
ity assays can be processed as input files and fur-
ther analyzed by Al algorithms, providing deeper
insights for clinical decision-making [85]. Addition-
ally, integrating tumor sensitivity testing with Al to
analyze various omics data can facilitate more per-
sonalized drug selection for cancer patients in the
era of precision oncology. Based on RF, SVM, and
k-nearest neighbors algorithms, the first single-cell
transcriptome-based Al model, SCATTome, was
developed predict individual cell responses to pro-
teasome inhibitors, validated by in vitro pharma-
codynamic screening, addressing the challenge of
drug sensitivity heterogeneity in multiple myeloma
[86].

Organoid models: The use of organoids in tumor
drug resistance studies has gained significant atten-
tion recently [87]. The integration of Al-driven data
analysis can optimize quality control processes and
culture conditions, alleviating the financial and
technical hurdles inherently associated with orga-
noid culture [88], while simultaneously enhancing
the efficiency and accuracy of drug sensitivity pre-
dictions. Kong et al. [67] integrated ridge regression
with linear regression, support vector regression,
and deep neural networks to train a model using
transcriptomic and pharmacovigilance data from
colorectal and bladder cancer organoids. Based on
TCGA patient transcriptomic data, the model pre-
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dicted drug responses for 114 colorectal and 77
bladder cancer patients, with survival analysis sig-
nificantly supporting the predictions (P=0.014 and
P=0.01, respectively).

Artificial intelligence assists in optimizing combination
therapy development
Al can integrate data from multiple biomedical sources
[70], organize drug combination datasets [72], predict
drug combination sensitivity, and save valuable time in
drug combination screening [89], thereby overcoming
tumor resistance, addressing combinatorial explosion
challenges, and enhancing cost-effectiveness in oncol-
ogy drug screening (Fig. 2d). scTherapy, a machine
learning model based on LightGBM, integrated sin-
gle-cell transcriptome and drug response data to pre-
dict combination therapies for metastatic/refractory
tumors. Following validation of flow cytometry and
bulk cell viability assays in acute myeloid leukemia
patient samples, 96% of predicted combinations dem-
onstrated selective efficacy or synergy [90]. Combo-
Pred combining RF, gradient boosting, and XGBoost,
identified synergistic drug combinations with high
selectivity against ovarian cancer. It prioritized candi-
dates like the mTOR inhibitor vistusertib and BCL2L1
inhibitor A1155463 (HSA score 9.7) for single-cell vali-
dation, guiding preclinical oncology drug testing [72].
Meanwhile, AI models can analyze the synergistic
mechanism of antitumor agents, thereby optimizing
drug combinations, facilitating the identification of the
optimal therapeutic regimen, and maximizing the ben-
efits for oncology patients. For instance, Zhou et al.
[73] developed prediction models using RF, XGBoost,
and CatBoost to analyze drug combination datasets
from DrugComb, DrugCombDB, and SYNERGxDB,
and identified the combination of lapatinib (RTK
inhibitor) and pazopanib (multi-kinase inhibitor) as
potent against breast cancer by blocking the PI3K/
AKT/mTOR pathway, validated by in vitro cytotoxic-
ity screening towards MDA-MB-231 and HCC1937
cell. Davis et al. [71] trained an AI model combining
neural networks and Bayesian network propagation
on IC50 values and RNA sequencing (RNA-seq) data
from six DLBCL cell lines, predicting strong syn-
ergy between histone deacetylase inhibitors and JAK
inhibitors. Experimental validation confirmed signifi-
cant synergistic effects of these combination therapy
(p<0.01), establishing a computational-experimental
closed-loop framework for cancer combination ther-
apy development.
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Artificial intelligence assists reduce tumor drug
resistance in clinical oncology

Tumor drug resistance poses a significant challenge in
clinical oncology, making studies into this phenom-
enon essential for enhancing the effectiveness of cancer
therapies [91], improving patient outcomes [92], reduc-
ing healthcare costs, and advancing medical science.
Recently, Al has been increasingly applied to clinical
trials of tumor drug resistance, offering promising solu-
tions to address resistance issues. By integrating diverse
sets, including genomic, transcriptomic, proteomic,
imaging, and clinical data, machine learning models
have been developed to predict patient responses to
specific oncology drugs (Table 2) [93].

Artificial intelligence facilitates the prediction

of tumor-resistant phenotypes

Undeniably, Al is a powerful tool for processing and
analyzing patient genomic data [22] and clinical infor-
mation [113]. Its introduction could assist physicians
in identifying patients at higher risk of developing
tumor resistance. Tumor drug resistance is influenced
by multiple factors, such as gene mutations [101] and
alterations in gene expression [75], which contribute to
the tumor’s increased tolerance to therapeutic agents.
Al can predict drug resistance phenotypes by system-
atically analyzing large-scale clinical information and
genomic data (Fig. 3a). Furthermore, factors such as
tumor patients’ genetic background and mutations,
weight, gender, age, and lifestyle habits may influence
treatment outcomes [114], and Al contributed to clini-
cians systematically evaluating patients’ drug resistance
and predicting resistance-prone populations or cohorts
[115].

Al can fully mine tumor resistance-related data from
vast amounts of data in single-cell omics to guide tumor
drug resistance. A drug response prediction model PER-
CEPTION using transfer learning and elastic net regu-
larization, predicted responses of transcriptional clones
within tumors, with the most resistant clone indicat-
ing overall patient response. It stratified responders and
non-responders in multiple myeloma (AUC=0.83) and
breast cancer (AUC=0.776) experiments [116]. Liu et al.
[2] mined and analyzed HCT-116 colon cancer single-cell
mass spectrometry metabolomic data, then used RF, arti-
ficial neural networks, and penalized LR to predict drug
resistance in individual cells, achieving 86.5% accuracy
in validation, highlighting its clinical potential. Goldstein
et al. [94] developed an AI model with SVM, REF, and
XGBoost, classify drug resistance and metastatic poten-
tial with>95% accuracy using lung cancer cell features
(size, granularity, fluorescence intensity).
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Fig. 3 Artificial intelligence-guided tumor drug clinical practice. a Al models predict patient responses to specific drugs and identify
and differentiate individuals with distinct drug-resistant phenotypes. b Al models screen predictive and prognostic biomarkers associated with drug

resistance
Additionally, liquid biopsy samples can provide
genomic, transcriptomic, epigenomic, proteomic,

and metabolomic information about tumor resistance
through omics analysis [8]. Al can efficiently integrate
and process these multidimensional datasets, enhancing
assay precision and supporting more informed diagnostic
and therapeutic decisions. Based on plasma proteomics
data of 184 non-small cell lung cancer patients, Shaked
et al. used supervised learning, and identified resistance-
associated proteins and combined key clinical param-
eters to predict response of ICB therapy. Survival analysis
revealed risk ratios of 4.5 (CI 2.07-9.77; p<0.0001) for
overall survival and 2.27 (CI 1.7-4.03; p=0.004) for pro-
gression-free survival, enabling patient stratification and
dynamic monitoring [117].

Artificial intelligence accelerates discovery of tumor
resistance biomarkers
In addition to tumor drug resistance phenotypes, there
is an urgent clinical need for specific and highly sensi-
tive biomarkers to monitor tumor progression and resist-
ance [118]. By leveraging Al-based bioinformatics tools
and computational biology models, the gene expression
levels of proto-oncogenes and oncogenes [99], enzyme
activity, and metabolic reprogramming [103] in patients’
tumors can be thoroughly analyzed to screen for molecu-
lar markers that are closely related to tumor drug resist-
ance, providing reliable evidence for the progression,
prediction [109], and prognosis [111], while also provid-
ing scientific rationale for the development of novel drug
resistance detection technologies and therapeutic strate-
gies (Fig. 3b).

The discovery of predictive biomarkers is critical for
stratifying patients into distinct susceptibility subtypes

and enabling personalized treatment [119]. Al can assist
physicians in identifying resistance genes [106] or pro-
teins [107] through minimally invasive manipulation,
thereby enhancing patient risk stratification and clinical
trial selection. Based on tissue information normalization
and deep learning with a fully connected neural network,
TINDL was established and trained on RMA-normalized
data from 958 GDSC cancer cell lines, and tested on
TCGA primary tumor RNA-seq data. It identified key
resistant genes (such as SLFN11, RPS6, RPL13) and path-
ways, validated by siRNA knockdown experiments [95].
Lee et al. [25] used LR and network propagation to ana-
lyze TME interactions, predicting ICI responses in mela-
noma, lung, bladder, and gastric cancers, and achieved a
median AUC of 0.79 across 11 ICI cohorts, with single-
cell experiments and enrichment analyses identifying
resistance-associated pathways as potential combination
therapy targets.

Prognostic biomarkers are valuable tools for monitor-
ing cancer progression and treatment efficacy, allowing
physicians to make timely adjustments to treatment regi-
mens [120]. By integrating single-cell and multi-patient
sample sequencing [100] and leveraging Al to explore the
relationship between specific tumor cell subpopulations
and patient prognosis, disease progression and outcome
can be predicted, providing novel insights for clinical
diagnosis and treatment of cancer [105]. An AI model
named AE-SDN, combining autoencoders and deep neu-
ral networks, extracted key features from tumor RNA-
seq data into a Cox regression layer to output patient
risk scores and identify immune-, oncogenic-, and tumor
suppressor-related genes. Compared to CD3%/CD8*
T-cell-density-based immune scores, AE-SDN improved
predictive power by>20% [111]. Guan et al. [103] used
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support vector machine-recursive feature elimination
to screen PYGL, a prognostic metabolic gene, from 858
KEGG pathway genes and single-cell data. A xenograft
model confirmed that PYGL knockdown inhibited tumor
growth, supporting PYGL as a potential metabolic ther-
apy target.

Available online tumor drug resistance databases

or servers

Available, easy-to-use tumor resistance databases shorten
the gap between basic research and clinical application,
allowing physicians to quickly obtain therapeutic refer-
ences and guidance based on laboratory data, contrib-
uting to precision oncology decision-making (Table 3)
[121]. In addition to The Cancer Genome Atlas (TCGA)
(https://www.cancer.gov/tcga) [122], based on the aggre-
gation of drug sensitivity data from nearly 75,000 experi-
ments, Yang et al. [123] developed the GDSC database
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(https://www.cancerrxgene.org/), which can identify
molecular biomarkers of drug sensitivity by querying for
specific anticancer drugs or cancer genes, facilitating the
discovery of novel biomarkers for cancer therapy. The
DRMref database (https://ccsm.uth.edu/DRMref/) [124],
which analyzed tumor cell composition, intra-tumor het-
erogeneity, and epithelial-mesenchymal transition scores,
provides a comprehensive characterization of drug resist-
ance mechanisms and supports the development of drug
combinations and innovative therapeutic targets. The
Cancer Therapeutics Response Portal (CTRP) (http://
portals.broadinstitute.org/ctrp/) [125], links genetic and
cellular characteristics of 860 cancer cell lines to their
sensitivity to 481 small molecule probes and drugs, accel-
erating the discovery of patient-matched therapies. ncR-
NADrug (http://www.jianglab.cn/ncRNADrug) [126]
catalogs non-coding RNAs (ncRNAs) associated with
drug resistance and targets, and predicts drug-ncRNA

Table 3 Available databases on tumor drug resistance

Databases = Websites Functions Ref

DRMref https://ccsm.uth.edu/DRMref/ DRMref provides comprehensive characterization of drug resistance mechanisms — [124]
using single-cell data obtained from drug treatment settings

DRESIS https://idrblab.org/dresis/ DRESIS is a comprehensive list that characterizes drug-resistant diseases and all [128]
types of resistance mechanisms

GDSC https://www.cancerrxgene.org/ GDSC integrates large-scale drug susceptibility and genomic datasets to aid [123]
in the identification of novel biomarkers for cancer therapy

CTRP http://portals.broadinstitute.org/ctrp/ CTRP links genetic, genealogical and cellular characteristics of cancer cell lines [125]
to drug sensitivity to accelerate the discovery of patient-matched cancer therapies

CTR-DB20  http/ctrdb.ncpsb.org.cn With gene set enrichment and tumor microenvironment analysis, CTR-DB 2.0 [129]
assists in elucidating tumor resistance mechanisms and identifying potential com-
bination therapies and their predictive biomarkers

CancerDR http://crdd.osdd.net/raghava/cancerdr CancerDR offers pharmacological data for 148 anticancer drugs across 952 cancer ~ [130]
cell lines, aiding in the identification of genetic alterations in drug target-encoding
genes

ncRNADrug  http://www.jianglab.cn/ncRNADrug ncRNADrug enables the prediction of drug-ncRNA associations based on ncRNA [126]
expression profiles, aiding drug development

MdrDB https://quantum.tencent.com/mdrdb/ MdrDB captures the biochemical impact of mutations on protein-ligand affinity, [131]
providing insights into mutation-driven drug resistance, combination therapy
development, and novel drug discovery

CCLE https://portals.broadinstitute.org/ccle CCLE integrates pharmacological data for 24 anticancer drugs across 479 cell lines,  [132]
enabling the identification of predictors for drug sensitivity

TCGA https://www.cancer.gov/tcga TCGA provides comprehensive genomic, epigenomic, transcriptomic, proteomic, — [122]
and clinical data to support cancer diagnosis, treatment, and prevention

PharmGKB https.//www.pharmgkb.org PharmGKB is a pharmacogenomics database containing genetic information [133]
on tumor drug resistance, aiding the identification of factors influencing individual-
ized therapy

COSMIC https://cancer.sangerac.uk/cosmic COSMIC provides data on somatic mutations in cancer, enabling the assessment [134]
of their impact on disease progression

OncoKB https://www.oncokb.org OncoKB is a cancer genome database that offers information on cancer-related [135]
mutations, drug resistance, and treatment response

ScDrugAct http://bio-bigdata.hrbomu.edu.cn/scDrugAct  ScDrugAct dissects cellular heterogeneity and the tumor microenvironment, shed-  [127]
ding light on mechanisms of drug action and resistance

CancerTracer http://cailab.labshare.cn/cancertracer CancerTracer facilitates tracking and characterization of tumor evolution in indi- [136]

vidual patients, aiding the identification of predictive biomarkers for personalized
cancer therapy
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interactions to support drug development and cancer
treatment. ScDrugAct (http://bio-bigdata.hrbmu.edu.cn/
scDrugAct) [127] compiles 17,274 drug-related genes and
276,559 associations between over 10,000 drugs and 53
cell types, linking drugs, genes, and cells to support cell
type-specific therapies and the identification of therapeu-
tic biomarkers.

Current challenges and future perspectives

Al models outperform traditional methods in data inte-
gration, handling complex data, and adaptability, offering
deeper insights into biomedical data for clinical deci-
sion-making and drug development [137, 138]. However,
their effectiveness depends on high-quality data [139],
and their "black-box" nature poses interpretability chal-
lenges, particularly with complex omics data and resist-
ance mechanisms [61]. Therefore, standardized data
management and acquirement is essential to ensure data
quality and consistency [140], while efforts should prior-
itize enhancing model interpretability and visualization
[141]. Moving forward, multimodal AI models should
be utilized to integrate diverse data sources, emphasiz-
ing key interactions between oncological data modalities
to boost predictive accuracy for resistance. Moreover,
strengthening collaboration among computer scientists
[142], biologists [143], clinicians, and pharmacologists
[144] will be vital for translating research into practical
applications and advancing precision oncology.

Quality and standardization of tumor drug resistance data

The scarcity of high-quality and suitable datasets is a
major challenge for the application of AI algorithms
to tumor drug resistance [145]. Currently, AI models
based on in vitro cancer cell lines show limited transla-
tional potential in forecasting clinical drug responses in
real-world scenarios [146]. Although many studies have
moved towards Al models using clinical data, appropri-
ate resistance datasets remain limited [139]. Even in large
databases such as TCGA, clinical drug response data are
typically sparse [95].

The integrity and comprehensiveness of clinical data
are fundamental to clinical research and evidence-based
decision-making, necessitating rigorous quality control
and validation protocols [147]. Effective integration and
processing of heterogeneous clinical data are critical for
ensuring the reliability of AI models [148]. In particular,
the National Cancer Institute Genomic Data Commons
(GDC) dataset, which integrated data from multiple can-
cer genome programs, provided comprehensive clini-
cal drug response data alongside multi-omics profiles.
By processing patient-derived molecular data through
standardized GDC workflows, researchers can easily
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achieve data normalization, thereby enhancing the qual-
ity of tumor resistance modeling [149].

Interpretable and transparent Al models urgently needed
in clinical oncology
Tumor drug resistance prediction models based on Al
algorithms are often considered “black box” models due
to the difficulty of explaining how these models actu-
ally arrive at their decisions [43]. When faced with the
challenge of balancing performance and interpretability,
scientists often prioritize performance metrics such as
accuracy, precision, and recall. However, healthcare deci-
sions require weighing complex, sometimes conflicting
data, and clinicians value the interpretability and practi-
cal applicability of tumor resistance models [150].
Enhancing the interpretability of models can assist
physicians in gaining a deeper understanding of the
molecular basis of drug resistance toward tumor and
developing more effective oncotherapy accordingly [43],
potentially improving the feasibility and practicability of
drug resistance models in clinical [62]. Zhao et al. [61]
developed a series of “visible” neural network (VNN)
models that linked genetic alterations to drug responses,
utilizing knowledge maps of biological components and
functions to guide the internal architecture of the model.
Unlike traditional “black box” neural networks, VNN
predictions of biomedical outcomes could be mapped to
changes in molecular mechanisms and pathways, thereby
enhancing the interpretability of clinical decisions.
Ogunleye et al. [139] constructed a patient-interpret-
able machine learning model, where expression levels
of selected miRNAs were nonlinearly combined by the
CART algorithm in a correlated manner, supporting the
model’s predictive outcomes.

Emerging multimodal artificial intelligence models

for enhanced robustness and accuracy in tumor drug
resistance

Clinical data sources are massive and diverse, encom-
passing a wide range of data types and variables, such as
patient charts, hospital records, laboratory test results,
radiological imaging, histologic and histopathologic
analyses, genomic profiling, and electronic health records
[110]. These sources contain structured data, includ-
ing clinical tests [151], semi-structured data like patient
questionnaires [152], and unstructured data, such as phy-
sician’s medical records [153].

The integration of such multimodal data has signifi-
cantly enhanced the robustness and accuracy of diag-
nostic or prognostic models, driving advancements in Al
applications within clinical settings [154]. MOMLN, an
advanced multimodal and multi-omics machine learn-
ing integration framework, has demonstrated exceptional
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predictive performance by incorporating comprehensive
input data, including clinical characteristics, DNA muta-
tion profiles, gene expression signatures, TME features,
and molecular pathway information. This framework
achieved a remarkable mean AUC of 0.989 in classifying
drug response types among 147 breast cancer patients
[97].

Concluding remarks

Artificial intelligence (AI), with its powerful data pro-
cessing and analysis capabilities, has shown significant
potential in both basic and clinical studies on tumor
resistance. By analyzing clinical data and omics data, Al
provides innovative perspectives and tools to understand
the onset and progression of tumor drug resistance, driv-
ing advances in cancer prediction, treatment, and prog-
nosis. Its successful application not only underscores the
potential of Al in the medical field, but also points to new
development directions for precision oncology.

However, the application of Al technology in tumor
resistance practice still faces several major challenges,
particularly the incompleteness and bias of medical data,
model interpretability, and robustness. To tackle these
recent challenges, it is essential to implement standard-
ized protocols for data collection, integration, process-
ing, analyzing, modelling and validation, and to focus on
developing robust, interpretable AI systems. The adop-
tion of emerging technologies, particularly multimodal
AI models, can greatly advance tumor drug resistance
research by enabling more effective synthesis and analy-
sis of diverse data types. Clinical validation of AI models
is also crucial to ensure their reliable application in real-
world studies.

Despite these above challenges, Al is poised to play
an increasingly pivotal role in mitigating tumor drug
resistance in clinical practice as technology continues to
advance and more comprehensive clinical data becomes
available. In the near future, Al is expected to predict
and combat tumor drug resistance with higher efficiency
and precision and become an integral part of every stage
of tumor screening strategy, patient management, and
prognosis, thus realizing personalized treatment and pre-
cision oncology.
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