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Abstract 

In breast cancer related to the BRCA1 mutation, luminal progenitor cells are believed to be the cells of origin, 
yet how these cells transform into invasive cancer cells remain poorly understood. Here, we combine single-cell 
epigenomic and transcriptomic data to reconstitute sequences of events in luminal cells that lead to tumorigenesis. 
Upon deletion of Trp53 and Brca1, we find that luminal progenitors display an extensive epigenomic disorder associ-
ated with a loss of cell identity. These cells then progress to tumor formation through a partial epithelial-to-mesen-
chymal transition, orchestrated by Snail and the timely activation of immunosuppressive and FGF signaling with their 
microenvironment. In human samples, pre-tumoral changes can be detected in early stage, basal-like tumors, which 
rarely recur, as well as in normal-like mammary glands of BRCA1 mutation carriers who have had cancer. Our study 
fills critical gaps in our understanding of BRCA1-driven tumorigenesis, opening perspectives for the early monitoring 
of individuals with high cancer risk.
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Graphical Abstract

Introduction
Mutations in oncogenes or tumor suppressors can accu-
mulate over time in healthy tissues [1–3]. The potential 
for tumor initiation must therefore be determined not 
only by accumulated genetic aberrations but also by the 
capacity of each cell and tissue to deal with them. Some 
tissues and specific cell lineages are more susceptible to a 
rupture of tissue homeostasis. For instance, women with  
BRCA1  deficiency mainly develop ovarian and breast 
cancers [4], and in breast cancers, BRCA1 mutations spe-
cifically lead to the transformation of luminal progenitor 
cells [5, 6]. A large fraction of breast tumors with BRCA1 
mutation (BRCA1 m) carrier cells harbor basal-like char-
acteristics, suggesting that luminal identity is disrupted 
during tumor formation [4]. However, reconstituting the 
cell states that are acquired by a luminal progenitor cell 
up to tumor initiation still needs in-depth mapping.

Our ability to study tumor initiation and identify pre-
tumoral cell states based on human observations is lim-
ited. Studying tumorigenesis solely based on samples 
from individuals who already have cancer is complex, as 
tumor samples are entangled stacks of molecular altera-
tions that occur over time. An alternative is to examine 
normal tissues from individuals predisposed to cancer. 
For instance, mammary gland tissue removed during 
prophylactic surgeries in individuals carrying BRCA1 
or BRCA2 germline mutations show early anomalies 
in"normal-like"tissue, based on cytometry or single-cell 

transcriptomics [7–10]. Dysregulation of the micro-
environment and epithelial tissue homeostasis disrup-
tion appear to be steppingstones toward tumorigenesis. 
However, BRCA1/2-deficient cells within prophylactic 
surgeries might be far from initiating tumors. The timing 
of tumor emergence in these mammary glands remains 
uncertain and may span from months to decades, limit-
ing our ability to study tumor initiation.

Genetically engineered mouse models offer a valu-
able alternative for studying breast tumorigenesis [5, 
11]. Mouse models allow tumor suppressor genes to be 
deleted, or oncogenes to be activated, in multiple cells, 
increasing the likelihood of detecting cells in transition-
ing from a normal-like state to a breast cancer pheno-
type. These models have been instrumental in identifying 
the cell-of-origin of basal-like breast tumors [12]. Mice 
with Brca1 and Trp53 deficiencies in luminal progenitors 
recapitulate the formation of human basal-like breast 
cancers [5]. These mice display aberrant alveolar differ-
entiation of luminal progenitors [13], suggesting that 
mis-control of cell identity could be an element of tumor 
initiation.

Here, we study the non-genetic determinants of 
breast tumor initiation by combining mice and human 
studies. We first leverage single-cell epigenomics and 
transcriptomics to map the non-genetic evolution of epi-
thelial cells towards transformation and to identify criti-
cal cell states and markers of tumorigenesis. We identify 
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a recurrent pre-tumoral cell state, characterized by par-
tial EMT and cell cycle defects, and specific activation 
of FGF and immuno-suppressive signaling. We further 
show that we can detect features of the pre-tumoral state 
in human tissues of BRCA1 mutation carriers.

Results
Epigenomic integrity and cell identity is disrupted 
in Brca1/Trp53‑deficient mammary glands
To map cell state transitions in the mammary gland prior 
to tumor formation, we performed a time-series analy-
sis on virgin Blg-Cre+/–  Trp53fl/fl Brca1fl/fl (CreP) female 
mice, combining transcriptomics via single-cell RNA 
sequencing (scRNA-seq) with single-cell epigenomic pro-
filing (snCUT&Tag)(Fig. 1a). CreP mice developed mam-
mary tumors at a median age of 5.4 months (Extended 
Data Supplementary Fig.  1a). Early abnormalities were 
observed starting at 3  months, characterized by abnor-
mal gland structures and carcinoma in  situ (CIS), with 
irregular nuclei and disrupted duct organization (Fig. 1a). 
By 5  months, CreP mice displayed multiple CIS, which 
were not detectable before dissection. To enhance our 
chances of detecting tumor initiation events, we espe-
cially focused on tumor-free CreP mice from a litter in 
which at least one other mouse already had a tumor (n = 
3 animals), as we reasoned that these mice would be on 
the verge of developing tumors. We included mammary 
gland tissue from control mice that did not express the 
Cre-recombinase (Blg-Cre–/– Trp53fl/fl Brca1fl/fl; CreN), as 
well as tumors from CreP mice (Fig. 1a and Supplemen-
tary Table  1). To increase the likelihood of identifying 
rare phenotypic states, we enriched part of the col-
lected samples for the epithelial fraction (Supplementary 
Table 1; see Methods).

For the scRNA-seq dataset, we collected 43,084 cells 
from 20 mice, including 23,129 epithelial cells (19,342 
from CreP mice, and 3,787 cells from CreN mice) (Fig. 1b 
and Extended Data Supplementary Fig.  1b). To iden-
tify distinct cell states, we first performed unsupervised 
graph-based clustering (Fig. 1b) and then annotated cell 
clusters based on the level of expression of physiologi-
cal markers and their samples of origin (Extended Data 
Supplementary Fig.  1c,d and Supplementary Table  2), 
whereby cluster was named if > 50% of cells in it belonged 
to a single sample (e.g. the T1a cluster has > 50% cells 
from tumor T1; Extended Data Supplementary Fig.  1e). 
We then grouped clusters into three states according to 
their distribution within CreN, CreP and tumor-bear-
ing mice (Fig.  1b,c): (i)"normal-like"states correspond-
ing to clusters in tumor-free CreN and CreP mice, (ii) 
tumor states, found only in tumors, and (iii) pre-tumoral 
states, corresponding to clusters found in tumor-free 
CreP mice and tumors but not in control CreN mice. We 

identified a series of normal-like states corresponding 
to well-known mammary gland cell populations: basal 
cells (Krt5) and clusters of luminal cells (Krt8), includ-
ing luminal hormone-sensing (H–S) cells (Prlr), luminal 
progenitor (LP) cells (Aldh1a3) and secretory alveolar-
differentiated (Avd) cells (Csn2) (Extended Data Supple-
mentary Fig. 1c,d). Of particular interest, secretory Avd 
cells were abnormally enriched in CreP virgin mice at all 
time points, consistent with previous reports of deregu-
lated luminal progenitor differentiation in Brca1/Trp53-
mediated tumorigenesis [13].

To distinguish the earliest non-genetic defects occur-
ring in Brca1/Trp53 deficient mammary glands, we first 
studied normal-like states using both transcriptomics 
and epigenomic information. Building on previous work 
identifying LP differentiation defects [13], we quantified 
and monitored the cell lineage integrity of epithelial cells 
over time, based on our detailed mapping of tumorigen-
esis in CreP mice, from 2.7 to 5.4 months. We measured 
lineage integrity based on coordinates of cells within a 
ternary plot, whereby each pole represented a reference 
epithelial cell type—basal, LP or luminal H–S—based on 
marker genes from CreN mice. At three months, basal 
cells from CreP mice were segregated near each pole, 
while LP and H–S cells displayed a continuum between 
LP and H–S poles, reflecting physiological differentiation 
from LP to H–S lineage (Fig.  1d). In contrast, starting 
from 5 months, basal, LP and Avd CreP cells accumulated 
in the center of the plot, with a continuum of expression 
profiles from basal to LP reference cell states (Fig. 1d).

To elucidate the non-genetic determinants of this 
loss of cell lineage integrity, we analysed single-cell 
epigenomic features of CreP mammary glands using 
H3K4me1 profiling (Fig.  1a). H3K4me1 accumulates 
at primed and activated enhancers  and promoters [14, 
15], offering insights on cell state encoding beyond gene 
transcription. We adapted snCUT&Tag [16] to mam-
mary glands, achieving a median coverage of 890 unique 
fragments per nucleus (n = 7,045 nuclei; Extended Data 
Supplementary Fig.  2a,b). We then in silico sorted cells 
based on their H3K4me1 enrichment at marker genes 
(Extended Data Supplementary Fig.  2c–d and Fig.  1e). 
Hierarchical clustering showed that tumor cells have an 
epigenome closely related to that of LP cells (Extended 
Data Supplementary Fig. 1 d), in line with LP cells being 
the cell of origin of these tumors. It also demonstrated 
that tumor cells "keep track" of their cell of origin through 
epigenomic features, even in a highly genomically-rear-
ranged setting. Next, we compared epigenomic profiles 
of epithelial cells in CreP and CreN mice (Fig. 1f,g). CreP 
LP cells exhibited a broader range of epigenomic states 
than CreN LP cells, illustrated by a broader spread of 
cells over a 2D space (Fig.  1f ). To determine whether 
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this variability was associated with the loss of cell lineage 
integrity that we observed between LP and basal cells, we 
projected single-cell epigenomic profiles into a 2D plot, 
with poles representing the reference epigenomes of LP 
and basal cells obtained from CreN cells (Fig. 1g). Similar 
to gene expression patterns, we observed a continuum of 
epigenomic profiles from LP to H–S cells, testifying to a 

physiological differentiation route in CreN cells. Further, 
we observed highly disordered epigenomic landscapes 
for CreP LP cells, with 27% (75 th quantile) of cells occu-
pying intermediary states between basal and LP epig-
enomes (Fig. 1g).

Altogether, normal-like luminal progenitor cells defi-
cient for Trp53 and Brca1 classified as normal-like cells 

Fig. 1 Transcriptomic and epigenomic profiling reveals non-genetic loss of cell identity in pre-tumoral Brca1/Trp53 deficient mammary 
glands. a Top: representative immuno-histochemistry for normal, pre-tumoral and tumor tissues, scale bars correspond to 20 µm. Bottom: 
Cre-recombinase–positive (CreP) or –negative (CreN) state in normal, pre-tumoral and tumor bearing mice, showing the number of samples used 
for scRNA-seq and snH3K4me1 profiling. For each sample, the number of slices within the circle/square corresponds to the number of mice used. 
For tumor-free mammary glands from CreP mice, color codes represent the age of the mouse. b Left: UMAP representation of scRNA-seq datasets 
for CreP epithelial cells. Cells are colored according to the sample of origin. Right: UMAP representation of scRNA-seq datasets for CreP epithelial 
cells; cells are colored according to the cluster of origin. Clusters are classified into states according to the sample of origin of cells, whereby 
tumor states correspond to clusters originating from tumor samples only; pre-tumoral states, from pre-tumoral CreP mice; and normal-like states, 
from both CreN and CreP mice. c Density plots representing the distribution of single cells according to their sample of origin grouped by genotype 
and presence or not of a tumor in the mouse, as in (a). d Focus on epithelial cells in normal-like states in CreP mice. Cells in normal-like state were 
grouped into 3 categories depending on the age of their mouse-of-origin. Ternary plots represent cell populations along three axes representing 
basal, luminal progenitor (LP) and luminal hormone-sensing (H–S) cells. Signatures (extreme poles) were established based on the top marker 
genes of each cell population in CreN animals. e UMAP representation of single nuclei H3K4me1 profiles of epithelial cells from CreN and CreP 
mice with and without tumors. Nuclei are colored according to their cell type. Right: representative snapshots of pseudo-bulk snH3K4me1 profiles 
for each cell type for the Krt5 and Elf5 genes. f Density UMAP plot representing the distribution of CreN and pre-tumoral CreP cells, similar as in (e). 
g Scatterplot representing the epigenomic basal and luminal progenitor scores for CreN and pre-tumoral CreP cells. Basal and LP epigenomic 
signatures were defined based on CreN basal and LP epigenomic profiles
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based on their expression of physiological markers 
(Fig. 1b, Extended Data Supplementary Fig. 1 d), yet they 
displayed a drastic epigenomic disorder, potentially lead-
ing to the loss of cell lineage integrity observed here and 
by others [17].

Detection of a rare, epigenetically‑primed pre‑tumoral cell 
state
Next, we focused on the three pre-tumoral states we 
detected. Among these, one is sample specific, while 
two are multi-sample (Extended Data Supplemen-
tary Fig.  1e). Using the PAGA algorithm, we quantified 

cluster connectivity [18] and found that one of these 
pre-tumoral states served as a hub linking epithelial sub-
clusters, with tumor cell states only accessible via this 
intermediate state (Fig.  2a). This cell state was found in 
multiple samples (Shannon index d = 0.70; Fig.  2a) and 
is composed primarily of cells from tumor-free CreP 
mice (75%), and to a lesser extent, from tumor samples 
(25%). We designed this cluster as "pre-tumoral" because 
tumor states were only reachable through this interme-
diate transcriptional state (Fig.  2a). Importantly, cells 
in the pre-tumoral state were overall very rare (0.9% of 
epithelial cells) yet detectable in 3-month-old CreP mice 

Fig. 2 Identification of a primed pre-tumoral state in vivo. a Partition-based graph abstraction (PAGA) representation of scRNA-seq datasets, 
with cells from normal-like, pre-tumoral and tumor clusters. Nodes refer to clusters, and edge thickness is proportional to the transcriptional 
similarity between clusters. The sample of origin for the three pre-tumoral clusters is indicated, with the multi-sample pre-tumoral cluster (derived 
from multiple pre-tumoral mammary glands) highlighted with a light green background. b Volcano plot representing the  log2 expression 
fold-change and  log10 adjusted p-value comparing cells in pre-tumoral state and LP cells. c Violin representation of  log10-normalized expression 
level of pre-tumoral marker genes Serpine2 and Tnnt2. *** corresponds to adjusted p-value <  10–3. d Snapshots of pseudobulk snH3 K4 me1 profiles 
for the Serpine2, Tnnt2 and Olfml3 genes in epithelial cells and tumor cells
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(0.4%); the fraction of these cells increased with age (1.8% 
at 5  months). In terms of cell identity, cells in a pre-
tumoral state displayed a significant down-regulation 
of genes characteristic of the luminal compartments, as 
compared to LP and Avd cells (e.g. Krt8, Krt18, Krt19 and 
Csn2) (Fig. 2b, Extended Data Supplementary Fig. 1c and 
Supplementary Table  3). This result indicates that the 
loss of identity observed in some CreP LPs by 5 months 
becomes further exacerbated in the pre-tumoral state 
(Fig. 1d). Notably, while CreP LPs did not yet express pre-
tumoral genes (Fig.  2c, e.g. Col9a1, Tnnt2 or Serpine2), 

we observed H3K4me1 enrichment at these loci within 
the LP compartment (Fig.  2d), suggesting an epigenetic 
priming of pre-tumoral genes in Brca1/Trp53-deficient 
LP cells.

To understand whether the pre-tumoral state origi-
nated from the expansion of isolated clones or was 
reached independently by multiple luminal cells, we 
evaluated the clonality of cells in the pre-tumoral state 
using inferred copy-number variation (CNV) profiles 
derived from scRNA-seq data, analyzed with inferCNV 
[19] (Extended Data Supplementary Fig. 3; see Methods). 

Fig. 3 Cell cycle defect and partial EMT in pre-tumoral state. a Barplot representation of the top hallmark pathways activated in pre-tumoral cells 
(in green) or LP/Avd (in gray); x-axis represents –log10 adjusted p-value. b Stack violin plot representation of expression of genes involved in EMT 
in epithelial clusters. ***p-value < 0.001, from Wilcoxon rank test comparing pre-tumoral cluster to LP/Avd clusters. c Pseudo-colored multiplex IHC 
staining for keratin 8 (red), keratin 5 (green), E-cadherin (magenta) and the mesenchymal markers N-cadherin (cyan) and vimentin (yellow). Scale 
bar, 50 µm. d Dot plot representation of the top 30 candidate TFs of the pre-tumoral expression program. TF ranks (x-axis) and scores (y-axis) were 
calculated using ChEA3. e Immunofluorescence staining for keratin 8 (red) and EMT-TF Snail (yellow) for CreN (control) or CreP mice and tumors. 
Scale bar, 50 µm. f Stack violin plot representation of the top markers of pre-tumoral cluster involved in the cell cycle regulation. ***p-value < 0.001, 
Wilcoxon rank test comparing pre-tumoral cluster to LP/Avd clusters. g Left: pseudo-colored multiplex IHC staining for identity markers keratin 5 
(green) and keratin 8 (red), together with senescent marker p16 (cyan) and EMT markers E-cadherin (magenta) and vimentin (yellow). Scale bar, 50 
µm. Right: Sunburst plot representation of the multiplex IHC staining for p16 + and p16– luminal cells from glands from 5-month-old CreP mice. 
Number of analyzed cells and mice are indicated
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First, to understand when genomic alterations began 
accumulating in mammary glands of CreP mice, we 
quantified the percentage of genome with inferred CNVs 
in each cell as compared to reference basal cells. Both the 
proportion of cells with high CNV content and the aver-
age amount of CNV per cell increased with age (Extended 
Data Supplementary Fig. 3a). Notably, we detected cells 
with high CNV content as early as 3 months, prior to any 
observable tumor. This indicates that luminal cells can 
tolerate significant CNV accumulation without immedi-
ate tumor initiation. Luminal progenitors, in particular, 
exhibited the highest CNV burden, comparable to that 
observed in pre-tumoral and tumor cells (Extended Data 
Supplementary Supplementary Fig.  3b,c). Using con-
sensus clustering to group inferred single-cell genomic 
profiles, we found that the LP compartment is multi-
clonal, with a lack of stable partitioning into distinct 
clones and low pairwise correlation scores, while tumors 
appeared oligo-clonal, with only a few genetic sub-clones 
(Extended Data Supplementary Fig.  3 d,e). Notably, part 
of the pre-tumoral cell population (39%) was multi-
clonal, suggesting that multiple luminal cells can switch 
to the pre-tumoral state. These findings suggest that non-
genetic mechanisms can drive the transition of luminal 
progenitors to the pre-tumoral state.

Altogether, thanks to the profiling of multiple animals 
nearing tumor initiation, we identified a continuum of 
cell states shared across several individuals. Luminal 
cells transition from an aberrant luminal state with com-
promised epigenetic and lineage integrity to a rare pre-
tumoral state, demarked by a more pronounced loss of 
luminal identity, among other features. This pre-tumoral 
state serves as an intermediate stage before progressing 
to fully developed tumor cell states.

Cells in a pre‑tumoral state display signs of cell cycle 
defects and undergo partial EMT
We then explored biological functions of cells in a pre-
tumoral state. We first studied which biological path-
ways characterized the transition from luminal to the 
pre-tumoral state (Fig. 3a) by comparing pathway activity 
between cells from LP, Avd and pre-tumoral clusters. We 
identified that several hallmarks of cancer cells [20] were 
activated—namely, Myc signaling, the cell cycle (E2F 
target gene signature), the epithelial-to-mesenchymal 
transition (EMT) and angiogenesis—while the apoptosis 
pathway was repressed. These transcriptional signatures 
endorsed the pre-tumoral nature of this transition state.

To further understand what role the EMT plays in 
these cells, we investigated the marker genes of the pre-
tumoral state. The Vim, Fn1 and Sparc genes were signifi-
cantly up-regulated in cells in a pre-tumoral state (Fig. 3b 
and Supplementary Table  3), indicative of changes in 

cytoskeleton and extracellular matrix. Cdh1/E-cadherin 
and several claudin genes (Cldn4, -3 and -1) (Supple-
mentary Table  3) were downregulated, indicative of the 
dissolution of adherens and tight junctions. Pre-tumoral 
state cells still expressed epithelial keratins, albeit to a 
lower level than their LP counterparts (Extended Data 
Supplementary Fig.  1c), suggesting that they reside in 
an intermediary epithelial and mesenchymal state [21]. 
We validated these findings using multiplex immuno-
histochemistry (IHC). We detected luminal cells in CreP 
mammary glands that expressed both vimentin and 
E-cadherin (n = 314 double positive cells, out of 2,079 
luminal cells; P = 3.1e- 5 compared to CreN glands, Fish-
er’s extract test; Fig. 3c).

Predicting the transcription factors (TF) that poten-
tially drive the transcriptomic changes from the lumi-
nal to the pre-tumoral state, we observed FOX family 
members among the top candidates as well as a series of 
EMT-associated TFs: Prrx1 and Prrx2 [22, 23], recently 
discovered to be EMT inducers, and the canonical EMT-
associated TFs (Twist1, Twist2, Snail and Snail2) (Fig. 3d). 
To validate our finding that the EMT-associated TFs were 
expressed prior to tumor formation, we stained formalin-
fixed, paraffin-embedded (FFPE) sections from mice at 
different ages for the EMT-related TFs Twist1 and Snail 
using immunofluorescence. In CreP mice, we detected 
luminal cells that expressed Snail prior to tumor forma-
tion, and the proportion of these cells increased with 
age; in turn, we found that Twist1 and Zeb1 were only 
expressed in full-grown tumors (Fig.  3e and Extended 
Data Supplementary Fig.  4a-c). These results are simi-
lar to previous findings of Snail expression leading up to 
tumor formation in mice [24]. We show here that EMT is 
one link of a series of state switches that occurs prior to 
tumor initiation.

We next focused on the top marker of the pre-tumoral 
state, Cdkn2a/p16 (Fig. 2b and Supplementary Table 3), 
which is a marker for cell cycle arrest and senescence 
[25–28]. We first tested for p16-positive cells in CreP 
tumor-free mammary gland and assessed the cell cycle 
status of these cells. Using both immunofluorescence 
and multiplex IHC, we showed that cells expressing p16 
are specific to CreP mice and are mostly luminal cells 
(Extended Data Supplementary Fig.  5a-d). These cells 
were detectable starting at 3 months of age and displayed 
an increased fraction of Ki67 staining, as compared to 
luminal CreN cells, with mouse aging (Extended Data 
Supplementary Fig.  5e). Thus, luminal cells can activate 
p16 prior to tumor initiation and can apparently bypass 
the cell cycle arrest normally imposed by p16. Notably, 
other cell cycle related genes that together promote G1 
to S transition—Cdk1, Cdk4 and Ccnd1—  were over-
expressed in cells in a pre-tumoral state (Fig.  3f and 
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Supplementary Table  3). The overactivation of these 
genes could help cells bypass a p16 overexpression–
induced cell cycle arrest [29].

Next, we looked for traces of a present or past senes-
cence-like phenomenon in CreP mammary glands. 
At the transcriptional level, the pre-tumoral state was 

significantly enriched for a senescence-related signa-
ture (Fridman_Senescence [30], adjusted P < 0.01) (Sup-
plementary Table  3). In addition, cells in pre-tumoral 
state express the pro-senescence secreted factors, Igfbp4 
and Igfbp7 (Supplementary Table  3), which can trigger 
senescence in neighboring cells [31]. We also screened 

Fig. 4 Features of the pre-tumoral state are detected in human low grade basal-like tumors and BRCA1-deficient mammary glands. a Boxplot 
of the  log10 normalized expression level of CDKN2A in the Pan Cancer breast dataset according to the tumor subtype, ***p-value < 0.001 
from Wilcoxon rank test comparing CDNK2A expression score of basal tumors vs other samples. b Boxplot representation of the scores 
for the pre-tumoral signature according to the tumor subtype, ***p-value < 0.001 from Wilcoxon rank test comparing pre-tumoral score of basal 
tumors vs other samples. c Box plot representation of the scores for pre-tumoral signature according to the stage of the tumor, * p-value < 0.05 
from Wilcoxon rank test comparing pre-tumoral score of stage I vs stage II/III tumors. d Kaplan–Meier disease-free survival curve for basal-like 
tumors, according to expression score of the human-derived pre-tumoral signature in the Pan Cancer breast dataset. e-f UMAP representation 
of the MERFISH datasets of 4 BRCA1m ± juxta-tumor human biopsies clustered by sample of origin (e) or cell identity (f). g Left: Merscope visualizer 
screenshots of two juxta-tumor breast BRCA1m human samples, analyzed using a custom 140 gene-panel (Supplementary Table 6). Scale bar, 1 mm. 
Middle: 2D spatial visualization of single cells from each experiment. Cells were labeled according to their corresponding cell type annotation. Right: 
2D spatial visualization of the kernel-density score estimation of the co-expression of the top highly spatially variable pre-tumoral genes (CCND1, 
VIM, IGFBP4, AQP5) and the LP marker ELF5 positive cells. For a-c, *p-value < 0.05, ***p-value < 0.001, n.s: not significant, Wilcoxon’s test comparing 
basal-like to each other breast cancer subtype or stage 1 to stage 2–3 cancers
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CreP tissues for markers of senescence associated to p16 
upregulation [18], including the presence of senescence-
associated heterochromatin foci (SAHF) and senescence-
associated-B-galactosidase (SABgal). We saw no SABgal 

staining within CreP mammary glands or tumor sections 
(Extended Data Supplementary Fig.  5  h); however, by 
immunofluorescence, we observed SAHF-like structures 
in tumor-free CreP glands, starting in 3-month-old mice 

Fig. 5 Activation of FGF signaling pathway prior to tumor formation. a UMAP representation of all cells from CreP scRNA-seq datasets. b Circos 
plot representation of Fgfr1/Fgf8 communication between pre-tumoral cells and other cells. c Stack violin plot representation of  log10 normalized 
expression values of top Fgf and Fgfr genes predicted to contribute to the FGF signaling between pre-tumoral cells and other cells. *** adjusted 
p-value < 0.001, n.s, non-significant for Wilcoxon rank test comparing expression scores in LP and pre-tumoral cells. d Immunofluorescence staining 
for keratin 8 (magenta), Krt5 (cyan) and pFGFR (yellow) of wild-type and BRCA1m prophylactic, juxta-tumoral and invasive carcinoma human 
samples. Scale bar, 100 µm. e Biplot illustrating the intensity of pFGFR staining per cell, together with the expression level of the luminal marker 
keratin 8 and the basal marker keratin 5
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(Extended Data Supplementary Fig.  5f,g). These results 
suggest that, in addition to p16 activation, cells in a pre-
tumoral state might have undergone a senescent-like 
phenomenon.

To spatially resolve the cell cycle and EMT associated 
changes in the mammary gland, we stained for epithe-
lial (E-cadherin) and mesenchymal (N-cadherin, vimen-
tin) markers as well as for p16, with multiplex IHC. p16 
expression was significantly associated with the expres-
sion of vimentin in CreP mammary glands: both E-cad-
herin and vimentin were expressed in 43% of p16-positive 
luminal cells but only in 17% of p16-negative luminal 
cells (P = 3.3e- 6, Fisher’s exact test; Fig. 3g). These results 
indicate that alterations of cell cycle and a partial EMT 
can co-occur in luminal cells prior to tumor formation.

Features of pre‑tumoral cell state are detected 
in early‑stage breast cancers and in mammary glands 
of BRCA1m carriers
To first determine whether the pre-tumoral state is pre-
sent in human tissues, we interrogated two large breast 
tumor cohorts [19, 32–34] and analysed the expres-
sion patterns of pre-tumoral genes, first focusing on the 
top marker of the pre-tumoral state, CDKN2A/p16. We 
found that CDKN2A was specifically over-expressed 
in almost all basal-like tumors (Fig.  4a). These findings 
mirrored our observations for Cdkn2a/p16 expression 
in mice (which was detectable prior to tumor initiation 
and maintained in tumor cells), suggesting that CDKN2A 
activation might be an early event in basal-like tumo-
rigenesis. Next, we studied the expression pattern of 
the full pre-tumoral signature, defined as the top over-
expressed genes in pre-tumoral cells versus LP and Avd 
cells (n = 50 human orthologs) (Supplementary Table 4). 
In the two cohorts, the pre-tumoral signature was signifi-
cantly more expressed in basal-like tumors than in other 
tumors (Fig. 4b and Extended Data Fig. 6a). In addition, 
the signature was more expressed in low-stage than high-
stage basal-like tumors and was associated with a longer 
disease-free survival (Fig.  4c,d and Extended Data Sup-
plementary Fig. 6b,c). These results suggest that tumors 
with a pre-tumoral like expression program might be 
closer to an early-stage disease.

We next asked whether the pre-tumoral state can be 
detected in normal-like glands in humans near tumor ini-
tiation, by analysing mammary epithelium from women 
with BRCA1 germline deficiency. We reasoned that 
informative samples would be those where the epithelium 
had been exposed to the same intrinsic—here, BRCA1 
deficiency—and extrinsic stresses as cells that already 
have initiated a tumor. This unique scenario, correspond-
ing to juxta-tumoral tissue, enhances the likelihood of 
detecting pre-malignant molecular abnormalities. We 

used the spatial transcriptomics MERFISH [35] approach 
to probe the expression of genes of the pre-tumoral sig-
nature (Supplementary Tables 5 and 6), together with 20 
marker genes to call cell identities in four juxta-tumoral 
tissues of BRCA1 m carriers (n = 49,970 cells; Extended 
Data Supplementary Fig.  6 d). We identified across four 
patients 20,021 epithelial cells, among which 11,263 
LP cells. We detected the co-activation of several pre-
tumoral genes – CCND1, VIM, AQP5 & IGFBP4—  in 
patches of LP cells (Fig.  4e, Extended Supplementary 
Fig.  6e-f ). Such observations mirror our findings in the 
mouse model, where pre-tumoral luminal cells acquire 
mesenchymal (Vim), senescence-related (Igfbp4) and 
aberrant cell cycle (Ccnd1) features. This analysis demon-
strates that a fraction of LP cells displays a pre-tumoral 
signature in the tissues of BRCA1 m carriers that already 
had a tumor.

Luminal cells in pre‑tumoral state activate 
immunosuppressive and FGF signaling
We then explored the way cells in pre-tumoral state 
communicate with one another and with other cell 
types from their microenvironment. To do so, we lev-
eraged all cell types in our mouse scRNA-seq datasets 
and inferred cell–cell communication pathways using 
the CellChat algorithm [36] applied on all cells of CreP 
tumor-free mice (n = 8,855 cells; Fig.  5a). Pre-tumoral 
cells shared inward communication pathways with both 
LP and basal cells, expression genes coding for recep-
tors for Notch, Kit and Epha signaling (Extended Data 
Supplementary Fig.  7a). Looking at the outward com-
munications, we identified that pre-tumoral epithe-
lial cells were predicted to send different signals than 
normal-like epithelial cells (Extended Data Supplemen-
tary Fig. 7b). Strikingly, pre-tumoral cells activated two 
signaling axes —MIF and SPP1— that were also found 
in tumor cells. Both pathways involved the emission 
of ligands from tumor cells to communicate with mac-
rophages that bear the Cd44 receptor (Extended Data 
Supplementary Fig.  7c,d). The Spp1:Cd44 signaling 
axis has been previously reported to act as an immune 
checkpoint, inducing immune tolerance in tumors [13, 
37, 38]. Pre-tumoral cells could thus be using such a 
signaling axis to evade immune surveillance during 
tumor initiation.

Cells in pre-tumoral state also transiently activated 
fibroblast growth factor (FGF) signaling (Fig.  5b and 
Extended Data Supplementary Fig.  7b,c) for autocrine 
and paracrine communication with epithelial cells and 
fibroblasts (Fig.  5b and Extended Data Supplementary 
Fig. 7 d). This signaling is not predicted to occur in tumor 
cells. Pre-tumoral cells displayed an over-expression of 
the receptor Fgfr1 as compared to LP cells (Fig. 5c) and 
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were the only cells expressing the Fgf8 ligand. Expres-
sion of the ligand is lost in tumor cells, suggesting that 
the activation of the FGF signaling is transient and poten-
tially necessary for early phases of transformation, but 
not for maintenance of tumor growth.

To assess the relevance of these findings in human tis-
sues, we analysed the activation of the FGF signaling in 
human mammary glands. For this, we performed immu-
nofluorescence staining for the activated phosphorylated 
form of all four isoforms of FGF receptors (pFGFR) in 
FFPE samples from n = 20 individuals (Supplementary 
Table  7). Samples included 8 healthy mammary glands 
from patients that never had a tumor (n = 4 BRCA1wt 
and n = 4 BRCA1m ‘prophylactic’), as well as normal-like 
mammary glands from BRCA1m carriers with a tumor (n 
= 9 BRCA1m juxta-tumoral) and tumors from BRCA1m 
carriers (n = 3, Fig.  5d). pFGFR levels were significantly 
elevated in specific regions of normal-like mammary 
glands of BRCA1 m carriers with and without a tumor, as 
compared to mammary glands of BRCA1wt individuals 
(Extended Data Supplementary Fig.  7e). Cells with high 
levels of pFGFR were specific to the luminal compart-
ment (Fig.  5e). We did not detect high levels of pFGFR 
in any cells in the three tumors we studied, suggesting 
that activation of FGF signaling is not a prerequisite for 
tumor growth. These results show that FGF signaling is 
over-activated in BRCA1m tissues. Further studies will be 
needed to understand whether the number of FGF-high 
cells is associated to the timing of occurrence of tumors 
in BRCA1m carriers.

Discussion
In this study, we analysed human and mouse tissues to 
gain a non-genetic understanding of tumor initiation. We 
propose that an epigenomic disorder and aberrant acti-
vation of mesenchymal and cell cycle markers are mani-
festations that LP cells are undergoing oncogenic stress 
and can potentially engage in tumor initiation (Extended 
Data Supplementary Fig. 8). The general epigenomic dis-
order we observe is associated with a loss of cell lineage 
integrity. These findings echo studies in colon and pan-
creatic tumorigenesis, suggesting that improper mainte-
nance of cell identity may precede tumor initiation [39, 
40]. By leveraging single-cell histone modifications profil-
ing, we showed that the LP compartment displays exten-
sive non-genetic disorder prior to transformation with an 
extremely heterogeneous H3K4me1 epigenomes, which 
ranges from basal-like to basal and luminal H3K4me1 
features. H3K4me1 is a proxy of enhancer activation 
and priming, suggesting that under oncogenic stress, LP 
cells either activate or prime enhancers in a disordered 
fashion, thereby losing their proper lineage integrity. 
H3K4me1 is only one histone modification among a wide 

variety of chromatin modifications that could encode 
relevant characteristics of early tumor evolution. Longi-
tudinal studies of repressive and permissive chromatin 
modifications, alone or in combination [41], will be key 
to further mapping the epigenomic evolution of luminal 
cells towards transformation and to identifying addi-
tional recurrent, non-genetic features of tumor initiation.

Using a mouse model played a crucial role in investi-
gating how luminal progenitor cells can give rise to fully 
developed tumors. Based on multiple sampling at differ-
ent stages of tumorigenesis—and in particular, on profil-
ing tumor-free animals that are litter mates of mice with 
tumors, we demonstrated that luminal cells consistently 
pass through a pre-tumoral state before progressing to 
fully-developed tumors. This state is characterized by a 
loss of luminal identity, activation of a partial mesenchy-
mal phenotype and immunosuppressive and FGF signal-
ing. Additionally, this pre-tumoral state retains signs of 
previous cell cycle arrests; indeed, our data suggest that 
p16 activation could be a very early event in basal-like 
tumorigenesis. Further studies will be needed to under-
stand precisely how luminal cells escaped such an arrest. 
Based on the observation that p16 and vimentin expres-
sion are correlated prior to tumor formation, we pro-
pose that partial EMT could be one of the mechanisms 
that enables cells to escape the cell cycle arrest imposed 
by oncogenic stress. EMT in early transformation had 
been observed by others in mammary glands in  vitro 
[42–44] and in vivo [24, 45]. In addition, transcriptional 
signatures of EMT have been detected in pancreatic [40] 
and prostate tumorigenesis [46], advocating for a general 
occurrence of EMT during early transformation.

We observed a significant delay—typically of several 
months—between tumor suppressor gene deletion and 
tumor appearance. In addition, we and others detect 
CNVs prior to tumor initiation in luminal progenitors 
[47, 48]. In concordance with other studies [25, 26], this 
supports the fact that genetic alterations are not suffi-
cient to launch tumor initiation in luminal cells. This is 
in line with the accumulation of somatic mutations in 
normal tissues prior to tumor formation [49–51]. Collec-
tively, these findings suggest that non-genetic processes 
involved in tumor evolution, such as clonal selection or 
epigenomic mechanisms, could be the detonators needed 
to achieve tumor formation. In this line, a recent study 
[52] proposed that loss of one Brca1 allele induces can-
cer-associated epigenomic changes that prime cells for 
subsequent transformation.

Early events in human BRCA1-tumorigenesis have 
so far been mostly studied using prophylactic surgeries 
performed on BRCA1m carriers. By employing a range 
of techniques from cytometry to immunofluorescence 
and single-cell approaches [7–10], studies have revealed 
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a series of malfunctions within the epithelial compart-
ment in BRCA1m carriers, including replicative stress 
and homologous recombination defect [53], accumu-
lation of DNA breaks [54], altered homeostasis of cell 
populations [6, 8, 10, 53] and an increased proportion of 
cells that exhibit both luminal and basal characteristics 
[8, 10] and exist physiologically in the mammary gland. 
Nee et  al. [10] also observed pro-tumorigenic changes 
in the microenvironment in BRCA1m carriers with the 
identification of pre-cancer associated fibroblasts. Here 
we leveraged a mouse model to first identify a signa-
ture of recurrent pre-tumoral events. We then showed 
that we can actually detect these features in tissues from 
BRCA1 m carriers that already had a tumor. We identi-
fied luminal progenitor cells with aberrant expression of 
senescence, mesenchymal and cell cycle markers. Further 
studies will be needed to understand whether the amount 
of cells with pre-tumoral features could relate to the tim-
ing of occurrence of cancer in patients, and could serve 
as predictive tools or as potential targets to delay tumor 
initiation. Our work paves the way to early detection of 
pre-tumoral events in humans in individuals with high 
cancer risk.

Methods
Experimental methods
Animal models
The generation of Brca1fl/fl and Trp53fl/fl mice has been 
previously described [55, 56].  Blg-Cre transgenic mice 
were purchased from The Jackson Laboratory. Mice 
strains were crossed to obtain Blg-Cre Trp53fl/fl Brca1fl/fl ani-
mals. Genotypes were determined by PCR (primers Cre: 
3’ CGA GTG ATG AGG TTC GCA AG 5’—3’ TGA GTG 
AAC GAA CCT GGT CG 5’; primer Brca1: 3’TAT CAC 
CAC TGA ATC TCT ACC 5’—3’ GAC CTC AAA CTC TGA 
GAT CCAC 5’; Trp53: 3’ AAG GGG TAT GAG GGA CAA 
GG 5’—3’ GAA GAC AGA AAA GGG GAG GG 5’). Mice 
were sacrificed by cervical dislocation. For each sample 
(gland or tumor), one piece was fixed in 4% paraformal-
dehyde (15,710, Euromedex) for histological analysis, one 
piece was snap frozen in dry ice and stored at − 80 °C and 
one piece was kept fresh for the desired experimentation.

Ethics statement
All procedures used in the animal experimentations are 
in accordance with the European Community Directive 
(2010/63/EU) for the protection of vertebrate animals. 
The project has been approved by the ethics committee 
n°02265.02. We followed the international recommenda-
tions on containment, replacement and reduction pro-
posed by the Guide for the Care and Use of Laboratory 
Animals (NRC 2011). We used as few animals as possi-
ble and minimized their suffering, no painful procedures 

were performed. The breeding, care and maintenance of 
the animals were performed by the Institut Curie ani-
mal facility (facility license #C75 - 05–18). Patients (n = 4 
BRCA1m carriers for MERFISH analysis, Supplementary 
Table 6; n = 20 patients for anti-phospho FGFR staining, 
Supplementary Table  7) gave informed consent for the 
use of their tissue in the study.

Immunofluorescence
Freshly dissected mammary glands or tumors were 
fixed overnight in 4% neutral-buffered paraformalde-
hyde at 4 °C, paraffin-embedded and sectioned at 3 µm 
thickness. Tissue sections were deparaffinized and rehy-
drated through a series of xylene and ethanol washes, 
and subjected to antigen retrieval in boiling citrate 
buffer pH6 (C9999) for 20 min. Permeabilization was 
obtained with 0.3% Triton X- 100; non-specific anti-
body binding was blocked with 5% FBS and 2% BSA (2 
h at RT), and then sequentially incubated with primary 
(overnight at 4 °C, following by 3 washes in PBS 10 min) 
and secondary antibodies (2 h at RT). Primary antibod-
ies used: chicken Keratin 5 (BioLegend 905,901, 1:500), 
rat Keratin 8 (Sigma MABT329, 1:500), rabbit Snail 
(PA5 - 115,940, 1:100), rabbit Zeb1 (Abcam 155,249, 
1:100), rabbit Twist1 (Cell Signaling 31,174, 1:400), 
mouse IgG3 H3 K27 me3 (Abcam 6002, 1:200), rabbit 
p16 (Abcam 211,542 1:100), rabbit phospho-FGFR (Cell 
Signaling 3471S, 1:100), chicken GFP (Thermo Fisher 
PA1 - 9533). Fluorochrome-conjugated secondary 
antibodies included AlexaFluor 488-conjugated anti-
chicken IgG, A488-conjugated anti-mouse IgG3, Cy3-
conjugated anti-rabbit IgG, Cy5-conjugated anti-rat. All 
secondary antibodies were used at 1:1000 dilutions, sec-
tions were counterstained with DAPI (1 mg/mL; Sigma). 
After 3 wash in PBS 10 min, sections were mounted in 
Aquapoly mount media.

Image acquisition and analysis of immunofluorescence data
Image acquisition of stained sections were done using a 
laser scanning confocal microscope (LSM780, Carl Zeiss) 
with a LD LCI PLAN-APO × 40 or × 65/08 NA oil objec-
tive. The acquisition parameters were: zoom 0.6; pixel 
size xy 554 nm; spectral emission filters (bandwidth): 
414–485 nm, 490–508 nm, 588–615 nm, 641–735 nm; 
laser wavelengths: 405, 488, 561 and 633 nm. At least 
3 independent images were acquired for each biologi-
cal replicate. Image processing was performed using Fiji 
Software, version 1.0. A quantitative score (“signal-to-
noise”) was computed for interpretation of transcrip-
tion factors expression, by measuring the mean nuclear 
fluorescence values for each keratin 8 + cell and divid-
ing these values by the mean of 6 independent negative 
nuclei from the same image. The counting of µ-HF was 
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done in Fiji with a custom macro, for each nucleus, we 
selected the most representative Z, then the counting was 
done automatically with the AutoThreshold MaxEntropy.

Senescence‑associated‑beta‑galactosidase staining
Straight  away after harvesting, samples were embed-
ded in optimal cutting temperature (OCT) medium 
(23–730–751) in molds and cooled on a metal support 
previously cooled on dry ice. The samples were stored 
at –80 °C before being cut in a cryostat at –30 °C into 
10 µm sections. Slides were stored at –80 °C before use. 
For the staining, the slides were removed from − 80  °C 
storage and dried at room temperature for 30 min. Sam-
ples were fixed in a fixation solution of PFA 2% [Elec-
tron Microscopy Sciences #15714] and glutaraldehyde 
0.2% [Sigma #49629] in PBS at room temperature for 
15 min. After three PBS washes of 5 min, samples were 
incubated 6  h at 30 °C in a SAβGal solution contain-
ing 40 mM of citrate buffer pH 6.0 [VWR #28,027.295; 
Sigma #C7129]; 5  mM of K3 Fe(CN)6 [Sigma #P8131]; 
5  mM of K4 Fe(CN)6 [Sigma #P9387]; 2  mM of  MgCl2 
[Sigma #M8266]; 150 mM of NaCl [Sigma #31434]; 0.1% 
of NP40 [Sigma #I8896]; 0.5 mg/mL of X-gal [Eurome-
dex #EU0012] and ultrapure Milli-Q water. After incuba-
tion, samples were washed in PBS, post-fixed in PFA 4% 
[Electron Microscopy Sciences #15714] for 15 min and 
washed again on PBS. Tissue sections were then coun-
terstained with Nuclear FastRed [Vector #H- 3403] for 2 
to 5 min (checked under the microscope for a good con-
trast), dehydrated by one 5  min bath of EtOH 95% and 
two 5  min in 100% EtOH baths before mounted with 
Eukitt [Sigma Aldrich #49629].

Multiplex histological staining (multiplex IHC)
Multiplexed IHC was performed according to the pro-
tocol developed by [57], with some adjustment. Tissues 
were baked at 60 °C for 1  h, deparaffinized in Xylene 
(Fisher Scientific, 10,467,270) and rehydrated. The heat-
induced epitope retrieval was done with pH  6.1 citrate 
buffer (Dako, S169984 - 2) or pH  9 EDTA buffer (Dako, 
S236784 - 2) in a 95 °C water bath for 30 min for the 
first staining (otherwise 15 min) followed by incubation 
in REAL peroxydase blocking solution (Agilent Dako, 
S202386 - 2) for 10 min. If the primary antibody was 
the same species as any antibody used in prior stains, 
another blocking step was added with Fab Fragment, only 
for anti-rabbit (Jackson ImmunoResearch Europe Ltd, 
711–007 - 003) for 20 min. Protein block serum free (Agi-
lent Dako, X090930 - 2) was added for 10 min. Primary 
antibody was incubated for 1 or 2 h at room temperature 
or overnight at 4 °C. The primary antibody was detected 
using a secondary antibody directed against the first one, 
conjugated with horseradish peroxydase (Anti-rabbit: 

Agilent Dako, K400311 - 2) (Anti-rat: BioTechne, VC005 
- 050) followed by chromogenic revelation with 3-amino- 
9-ethylcarabazole (AEC) (Agilent Dako, K3468). Slides 
were counterstained with hematoxylin (Thermo Scien-
tific, 6,765,001) and mounted with Glycergel aqueous 
mounting medium (Dako, C056330 - 2). After scanning 
(Philips Ultra Fast Scanner 1.6 RA), tissues were bleached 
with ethanol baths, and another cycle was performed 
starting with heat-induced epitope retrieval.

Overlay of multiplex IHC stainings
Histological analysis was performed using the open-
source image analysis QuPath software (QuPath- 0.3.2, 
http:// qupath. github. io/) [58] and ImageJ/Fiji. We created 
a new QuPath project containing all scans of each slide 
which allow us to crop and export (BioFormats plugin) 
and then overlay the images using Fiji script following 
these different steps: 1. color deconvolution (separation 
of hematoxylin and AEC signal); 2. alignment on hema-
toxylin images; 3. creation of transformation matrix 
on AEC images; 4. For some of the staining (Edac, Vim, 
Ki67), an automatic threshold using MaxEntropy was 
done to remove background; for the rest (p16, Krt5, Krt8, 
Ncad), a different threshold was determined using con-
trol cell signal. Each staining was colored as desired. For 
further analysis, the composite image was transferred 
back to QuPath. The different structures of the gland/
tumors were annotated (duct, stroma, juxta-tumoral 
duct, mm-tumor, tumor) by hand. The ‘cell detection’ 
function based on hematoxylin nucleus staining was used 
to identify all cells, and then the ‘show detection meas-
urement’ function was used to export the annotation and 
the intensity signals for all stainings for each cell, which 
were analyzed in R.

Quantification of multiplex IHC images
The resulting measurements were exported and analyzed 
in R (4.1.1). Briefly, high signal channels, corresponding 
to Ki67, Vim were thresholded by the Maximum Entropy 
algorithm, whereas the remaining channel markers were 
subjected to a custom thresholding approach. To iden-
tify true positive cells for each marker, mean “Cell” sig-
nal values were binarized as follows:—non-zero values 
of the max entropy thresholded markers were set to 1, 
whereas zero values were set to 0. To determine positive 
cells for p16, Ncad and Krt5, the local minimum after 
the highest peak was fitted on the density distribution of 
the merged cells from all the samples corresponding to 
each marker. Different thresholds were defined for each 
sample for the following markers: Krt8 and Ecad. Briefly, 
the “approxfunc” R interpolation function was applied on 
the density distribution of each marker on each sample, 
followed by an optimization step using the “optimize” R 

http://qupath.github.io/)
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function to retrieve the local minimum within the inter-
val of the density function. Higher values as compared to 
each threshold were set to 1, whereas smaller values were 
set to 0. Basic R functions were used to calculate the per-
centages of positive cells for each marker and the ggplot 
package was used for graphical representations. Stro-
mal regions were excluded from the analyses based on 
manual curation of images, based in H&E and Vimentin 
stainings.

Mammary gland & tumor dissociation and flow cytometry
Samples were cut roughly with dissecting scissors and 
then with two scalpels for approximatively 10 min. 
Single-cell dissociation was done by enzymatic diges-
tion with 3 mg/ml collagenase I (Roche, 11,088,793,001) 
and 100 U/ml hyaluronidase (Sigma-Aldrich, H3506) in 
complete media (HBSS 24020117; 5% SVF) during 1  h 
30 min under agitation at 170 rpm at 37 °C. Cells were 
then dissociated in PBS 0.25% trypsin-versen (Thermo 
Fisher Scientific, 15,040–033) pre-warmed at 37 °C for 
1  min 30 s with pipetting for 45 s. The cell suspension 
was then treated with dispase 5  mg/ml (Sigma-Aldrich, 
D4693) and DNase 0.1 mg/ml (Roche, 11,284,932,001) in 
complete media for 5 min at 37 °C. A treatment with red 
blood cell lysis buffer (Thermo Fisher Scientific, 00–4333 
- 57) was carried out then the suspension was filtered 
at 40 µM before counting and FACS staining. Cell sus-
pensions were stained 20 min in dark at 4  °C with anti-
CD45-APC 1:100 (BioLegend, 103,112), anti-CD31-APC 
1:100 (BioLegend, 102,510), anti-CD24-BV421 1:50 (Bio-
Legend, 101,826), and anti-CD49f-PE 1:50 (BioLegend, 
313,622). Cells were resuspended in cytometry media 
(PBS, BSA, EDTA). For mammary gland samples, either 
the total epithelium was recovered, or the luminal and 
basal cells populations were recovered separately.

scRNA‑seq data generation
In accordance with the protocol of 10X Chromium, 
the cells were resuspended in PBS 0.04% BSA (Sigma, 
A8577). Depending on the samples, approximately 3000 
or 4000 cells were loaded on the Chromium Single Cell 
Controller Instrument (Chromium single cell 3’ v3 or 3’ 
NextGem, 10X Genomics, PN- 1000075) in accordance 
with the manufacturer’s protocol. Libraries were pre-
pared according to the same protocol. scRNA-seq librar-
ies were sequenced on a NovaSeq 6000 (Illumina).

snCUT&Tag data generation
snCUT&Tag was adapted from [16, 59]. All washes were 
made with 500 µL unless otherwise stated and all cen-
trifugations were done using a swinging bucket centri-
fuge at 1300 g for 4 min at 4 °C for nuclei preparation, or 
600 g for 8 min at 4 °C for the subsequent steps. Nuclei 

were extracted from 1–2 million cells for 10 min on ice 
in 6 mL ice-cold NE1 buffer (20 mM HEPES pH7.2, KCl 
10 mM, spermidine 0.5 mM, glycerol 20%, BSA 1%, NP- 
40 0.1%, digitonin 0.01%, proteases inhibitor 1x). Nuclei 
were filtered with a 30 uM cell strainer, washed in 6 mL 
PBS + BSA 1% and resuspended in Dig-Wash buffer (20 
mM HEPES pH7.2, NaCl 150 mM, spermidine 0.5 mM, 
BSA 1%, NP- 40 0.01%, digitonin 0.01%, proteases inhibi-
tor 1x), checked under microscope and counted with 
4,6-diamidino- 2-phenylindole (DAPI) staining. 50,000 
to 100,000 nuclei were resuspended in 50uL antibody 
buffer (EDTA 2  mM, 20 mM HEPES pH7.2, NaCl 150 
mM, spermidine 0.5 mM, BSA 1%, NP- 40 0.01%, digi-
tonin 0.01%, proteases inhibitor 1x) with 1:50 antibody 
(Anti-H3K4me1 #5326 D1 A9, Cell Signaling) and incu-
bated overnight at 4  °C with rotation. Next day, nuclei 
were washed with Dig-Wash buffer and resuspended in 
100uL Dig- 300 buffer (20 mM HEPES pH7.2, NaCl 300 
mM, spermidine 0.5 mM, BSA 1%, NP- 40 0.01%, digi-
tonin 0.01) with the proteinA-Tn5 fusion (Diagenode, 
#C01070001, 1:250) and incubated for 1 h at room tem-
perature with rotation. Then, nuclei were washed three 
times with Dig- 300 buffer, resuspended in 300 µL Tag-
Buffer (20 mM HEPES pH7.2, NaCl 300 mM, spermidine 
0.5 mM, BSA 1%, NP- 40 0.01%, digitonin 0.01%,  MgCl2 
10 mM) and incubated for 1  h at 37 °C. Tagmentation 
was stopped by addition of one volume of 1 × Diluted 
Nuclei Buffer (DNB, 10X Genomics) supplemented with 
2% BSA, 12.5 mM EDTA. The nuclei were then centri-
fuged at 1300 g, 4 min at 4 °C and washed twice with 200 
µL 1 × DNB supplemented with 2% BSA. The nuclei were 
resuspended in 10–70 µl of DNB + 2% BSA. If the sam-
ple did not show nuclei aggregates, nuclei were loaded 
on a 10 × Chromium system using 10 × Chromium Sin-
gle Cell ATAC–Seq kit v2 (10X Genomics) as described 
[16]. Final library amplification with 15 PCR cycles 
was performed according to the Chromium Single Cell 
ATAC Library kit manual. snCUT&Tag libraries were 
sequenced on a NovaSeq 6000 (Illumina) in PE50 mode.

MERFISH data generation
A custom multipurpose 140-gene panel was developed 
by our group balancing genes for cell type annotation and 
identification of abnormal luminal cells using our pre-
viously defined pre-tumoral signature from the mouse 
dataset (Supplementary Table  5). Frozen tissue sections 
of 10 µm thickness from 4 juxta-tumor breast biop-
sies were adhered to the MERSCOPE beaded slide, and 
stored in 70% ethanol at 4 °C for a maximum of 1 month. 
Adhesion was optimized to be able to fit two biological 
samples on the same coverslip. Standard sample prepara-
tion for frozen tissues was performed following the Viz-
gen instruction manual, without any specific adaptations. 
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In short, a cell boundary staining was applied, followed 
by hybridization with a custom-made 140 gene panel. 
The section was then embedded and cleared. Slides were 
imaged with the MERSCOPE machine, and processed 
with the software version 233.

Computational methods
Code related to the following sections can be found at 
https:// github. com/ vallo tlab/ BRCA1_ Tumor igene sis

Processing of scRNA‑seq datasets
Demultiplexed FASTQ files from the raw single cell 
RNA-seq reads were aligned using the pre-built reference 
mm10 genome proposed by 10X Genomics toolkit, and 
gene counts were obtained using the Cell Ranger “count” 
function. Empty droplets were filtered out using the 
DropletUtils package, implemented in the Cell Ranger 
suite, at an FDR of 0.01. Doublets were detected using 
the DoubletDetection algorithm (https:// zenodo. org/ 
record/ 63495 17) with default parameters. Singlet expres-
sion matrices were processed individually in R (v4.0.2) 
mainly using Seurat (v3) R package [60]. We kept cells 
with a coverage in between 1000–8000 genes, 1000–
60000 UMIs and < 30% of mitochondrial reads. Filtered 
gene-cell barcodes matrices were normalized individually 
using the “SCTransform’’method, and filtered gene-nuclei 
barcodes were normalized using the “NormalizeData” 
function using the “LogNormalize” method.

Clustering, UMAP reduction and cell annotation
Normalized expression matrices were merged without 
data integration using Seurat package (v3.9). Coarse-
grained clustering (resolution = 0.8) was applied on the 
merged scRNA-seq datasets after PCA projection (n = 50 
PCs), and canonical markers were used to annotate cell 
types (Epithelial, Immune, Fibroblast, Endothelial). To 
annotate epithelial subtypes, we created a Seurat object 
containing these cells only, reran Variable Features selec-
tion, PCA, clustering at a higher resolution (res = 1.2) 
and UMAP projection. Differential Gene Expression 
(DGE) between the epithelial subtypes was run using Fin-
dAllMarkers (only.pos = TRUE,  log2FC = 0.05, adjusted 
P < 0.05). The resulting clusters were manually anno-
tated using canonical markers from 37. If a given clus-
ter is mainly composed of either mmT or tumor cells (> 
50%), the cluster name is a concatenated form of the sam-
ple of origin and a given index (of integer type). UMAP 
projections were plotted using “uwot” as umap.method, 
n.neighbours = 30, distance metric = “cosine”, min.dist 
= 0.3) and “random.state = 42”.

Partition‑based graph abstraction (PAGA)
PAGA was performed using “scanpy” Python library 
loaded on RStudio using “reticulate” R package; using 
default parameters and a threshold of 0.1 to keep highly 
connected nodes. Connectivity scores were extracted 
from the PAGA output, along with the nodes and edges 
connections. Centrality scores (number of edges) were 
computed by counting the number of edges for each cell 
cluster (node).

Copy number variation (CNV) inference from scRNA‑seq 
data
CNVs were inferred using inferCNV (https:// github. com/ 
broad insti tute/ infer cnv) with default parameters, taking 
as reference the CreP basal cells for mouse scRNA-seq. 
The “observation” and “reference” transformed matrices 
were extracted and quantified for each nucleus the num-
ber of genomic regions, with an absolute inferCNV score 
(from the “observations” transformed matrix) above the 
95 th percentile of the reference dataset (from the “ref-
erences” transformed matrix). This score was expressed 
as a percentage of the total number of regions in the 
genome; this metric is referred to as “the percentage of 
genome with CNVs”.

Pathway enrichment and signature analysis
PEA was performed using the “enricher” function (Clus-
terProfiler R package) on the top overexpressed genes 
by the pre-tumoral as compared to the LP/Avd clusters 
 (avg_log2FC > 0.5, adjusted P < 0.05), using the Hall-
mark collection from the Molecular Signature Database 
(MSigDB) 21 available through the msigdbr R package. 
Transcriptional signatures were quantified using the 
“UCell” [61] package. We computed the gene signatures 
using the wrapper function “AddModuleScore_UCell”, 
giving as input a list of features, along with the seurat 
object. The “FindMarkers” Seurat function was used to 
define DEG between the pre-tumoral and LP/Avd cell 
clusters  (avg_log2FC ≥ 1 and adjusted P < 0.05, only.pos 
= TRUE). This mouse gene list (n = 53 genes) was con-
verted to human orthologs using the “gorth” function 
from the “Gprofiler” R package, obtaining a list of n = 50 
human genes (Supplementary Table 4).

Analysis of snCUT&Tag datasets_Preprocessing
Fastq files were processed using an in-house pipeline 
https:// github. com/ vallo tlab/ scCUT- Tag_ 10X to gener-
ate fragment files, count matrices and pseudo-bulk big-
wig files. The unique number of fragments per nuclei, and 
the fraction of reads that fall within peaks (FRiP), were 
computed. Genomic regions were binned using the “cre-
ateArrowFiles” function from the ArchR suite [62], taking 

https://github.com/vallotlab/BRCA1_Tumorigenesis
https://zenodo.org/record/6349517
https://zenodo.org/record/6349517
https://github.com/broadinstitute/infercnv
https://github.com/broadinstitute/infercnv
https://github.com/vallotlab/scCUT-Tag_10X
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as input the list of fragment files corresponding to each 
sample, with minFrags = 100, maxFrags = 3000, TileMat-
Params: binsize = 20,000 bp, binarize = FALSE, addGene-
ScoreMatrix = TRUE, using the mm10 reference genome, 
excluding the Y and mitochondrial chromosomes. Dou-
blets were identified using the “addDoubletScores” ArchR 
function with k = 20, n_neighbors = 40, corCutOff = 0.75. 
Nuclei with a DoubletEnrichment scores higher than 30 
were annotated as “Doublets” and were discarded for the 
downstream steps. The filtered 20,000 bp TileMatrix was 
further processed by performing TF-IDF normalization 
and 5 iteration steps of Latent Semantic Indexing (LSI) 
dimension reduction. LSI components with a correla-
tion score > 0.8 with the “total_fragments” were removed. 
Two-dimensional visualizations were performed using 
the “addUMAP” ArchR function, taking as input the 
LSI-based dimension reduction. Louvain graph-based 
clustering was performed on the LSI-based matrix using 
the “addClusters” ArchR function with resolution = 0.8, 
n_neighbors = 30.

Analysis of snCUT&Tag datasets_cluster annotation
A manual annotation step was performed on the Gene-
ScoreMatrix assay of the ArchR project to annotate the 
clusters: Differential Gene Signal (DGS) between the 
clusters was run using getMarkerFeatures(testMethod 
= ”wilcoxon”, bias = ”nFrags”, useMatrix = ”GeneScore-
Matrix). The top markers for each cluster (log2 FC > 2 
& FDR < 0.05) were intersected with the previously used 
canonical markers to annotate the scRNAseq data. The 
annotation accuracy was manually checked by visualizing 
each canonical marker signal on IGV.

Analysis of snCUT&Tag datasets_2D basal‑LP plots
A 1-vs-all wilcoxon test was performed between the epi-
thelial subtypes of the creN sample using the GeneScore-
Matrix assay. Top 200 most-enriched gene signals (log2 
FC > 4 & FDR < 0.05) per subtype were considered as 
“canonical” H3 K4 me1 signal genes. creP epithelial cells 
were scored by the three canonical signatures using the 
“AddModuleScore” function. Two-dimensional plots of 
the Basal-LP signatures were plotted for the three his-
tological categories: creP, creN and Tumor. For the sake 
of clarity, “geom_jitter” was used to split the nuclei and 
increase the plot resolution.

Analysis of PanCancer breast and CPTAC datasets
Expression matrix were downloaded from cbioPortal 
web-portal (https:// www. cbiop ortal. org/ study/ summa 
ry? id= brca_ tcga_ pan_ can_ atlas_ 2018) and normal-
ized CPTAC Breast datasets (https:// www. linke domics. 
org/ data_ downl oad/ TCGA- BRCA/). Metadata tables 
(including stage and breast tumor subtype) were also 

downloaded from the two websites. PanCancer expres-
sion matrix was normalized using the DESeq2 R pack-
age. CDKN2 A/p16 log-normalized expression level 
was compared between basal-like and other tumor 
subtypes (HER2, LumA, LumB) and normal-like sam-
ples using a two-sided Wilcoxon test. In both datasets, 
UCell package was used to compute pre-tumoral sig-
nature scores on each sample, and compare the scores 
distribution between the basal-like and the remaining 
breast subtypes using the two-sided Wilcoxon rank-
sum test. Within the basal-like subtype only, these 
same pre-tumoral scores were compared between 
early (stage1) and late (stage 2 or more) stage samples. 
Survival metrics, including overall survival from the 
CPTAC (included in the metadata) and Progression-
free survival from the PanCancer (also included in the 
metadata), were compared between samples with high 
or low signature scores using the Survfit and Survival R 
packages.

Transcription factor (TF) enrichment analysis
TF enrichment was performed on the overexpressed 
genes by the pre-tumoral cluster as compared to the 
LP/Avd clusters  (avg_log2FC > 0.5, adjusted p-value   < 
0.05), using the Chea3 R package49 with default param-
eters. Top 30 enriched TFs were further represented on 
the figures.

Preprocessing of MERFISH datasets
Cell segmentation was performed based on DAPI and 
membrane staining, using the CellPose algorithm as part 
of the Merscope workflow. Data was inspected using the 
visualizer software, and subsequently analyzed using 
a custom pipeline. The output cell gene count and cell 
coordinate matrices were loaded individually into Seurat 
(v5). Only regions with a raw number of cells > 4,000 were 
kept for further analysis. To ensure consistency in cell 
annotation across the 4 samples, the individual expres-
sion matrices were merged without considering their 
spatial coordinates. Cells with nUMI > 20 and nGenes 
detected > 10 were kept for further steps. Count matri-
ces were processed using NormalizeData (normalization.
method ="LogNormalize", scale.factor = 10,000), Scale-
Data, RunPCA (npcs = 30), RunUMAP(reduction ="pca", 
dims = 1:20). Graph-based clustering was performed 
using the FindNeighbors(reduction ="pca", dims = 1:20) 
and FindClusters(resolution = 0.8) functions in Seurat. 
Clusters were annotated using the same procedure as for 
the scRNAseq (see above). Two-dimensional plots of the 
individual samples were represented using the “DimPlot” 
function, with “reduction = ”spatial”.

https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://www.linkedomics.org/data_download/TCGA-BRCA/
https://www.linkedomics.org/data_download/TCGA-BRCA/
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Analysis of MERFISH datasets & identification of expression 
patterns of the pre‑tumoral signature
We focused on the LP compartment in each sample and 
kept the spatial coordinates of each LP cell. Neighbor 
relationships between LPs in each sample were com-
puted using the “getSpatialNeighbors” function from the 
MERINGUE R package, setting the minimal distance 
between LPs to consider as neighbors to dist = 15. Sig-
nificantly spatially auto-correlated genes were obtained 
by computing the MORAN’s I test, taking as input the 
normalized-gene expression matrix and the weighted 
adjacency matrix computed before. These steps were 
run independently on each LP compartment from each 
sample. The top 95 th quantile highly spatially variable 
genes from the four samples were kept as “TRUE_spa-
tially variable”. From this list of genes, only those part in 
the pre-tumoral signature were considered; namely: VIM, 
CCND1, AQP5, IGFBP4. The coexpression of the four 
genes retained from the previous steps was assessed on 
each sample using a kernel-density of co-expression from 
the Nebulosa (https:// github. com/ powel lgeno micsl ab/ 
Nebul osa) R package.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12943- 025- 02331-9.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Acknowledgements
We thank Dr. Alain Puisieux and Dr. Josh Waterfall for providing critical discus-
sion. We also thank the animal facility, the sequencing and imaging platforms 
from Institut Curie. We thank Dr. J. Jonkers for providing mouse strains.

Authors’ contributions
C.L. and M.L. performed experiments throughout the manuscripts. A.D and 
A. T. performed single-cell epigenomic experiments. M.S and P.P performed 
computational analysis. R.L, K.B performed MERFISH experiments. M.F. 
performed mouse work. A.C. performed senescence associated experiments. 
A.V.S. selected patient samples. J.M. and H. S. performed and analysed multi-
plex IHC experiments. C.V designed and led the project. C.V., C.L., M.S. and M.L. 
made figures and wrote the manuscript with input from all authors.

Funding
This work was supported by the ATIP Avenir program, by Plan Cancer, by 
the SiRIC-Curie program SiRIC Grants #INCa-DGOS- 4654 and #INCa-DGOS-
Inserm_12554, support from Bettencourt-Schueller Foundation and by a starting 
ERC grant from the H2020 program #948528-ChromTrace (C.V.). High-throughput 
sequencing was performed by the ICGex NGS platform of the Institut Curie 
supported by the grants Equipex #ANR- 10-EQPX- 03, by the France Genomique 
Consortium from the Agence Nationale de la Recherche #ANR- 10-INBS- 09–08 

("Investissements d’Avenir"program), by the ITMO-Cancer Aviesan—Plan Cancer 
III and by the SiRIC-Curie program SiRIC Grant #INCa-DGOS- 4654.

Data availability
The datasets described in this study have been deposited in the  GEO reposi-
tory, SuperSeries GSE200444. 

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Institut Curie, CNRS UMR3244, PSL University, Paris, France. 2 Translational 
Research Department, Institut Curie, PSL University, Paris, France. 3 Department 
of Pathology-Genetics and Immunology, Institut Curie, PSL University, Paris, 
France. 4 Institut Curie, INSERM U932, Equipe Leader Fondation ARC, PSL Uni-
versity, Paris, France. 5 Single Cell Initiative, Institut Curie, PSL University, Paris, 
France. 6 Institut Curie, CNRS UMR3664, PSL University, Paris, France. 7 Inserm 
U934, Institut Curie, CNRS UMR3215, PSL University, Paris, France. 8 Cellular 
Plasticity and Disease Modelling, Department of Developmental and Stem Cell 
Biology, UMR 3738, CNRS, Institut Pasteur, Paris, France. 9 INSERM U934, Institut 
Curie, PSL University, Paris, France. 10 Swiss Institute for Experimental Cancer 
Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology 
Lausanne (EPFL), Lausanne, Switzerland. 11 Department of Dermatology, Fac-
ulty of Biology and Medicine, Lausanne University Hospital (CHUV), University 
of Lausanne, Lausanne, Switzerland. 

Received: 28 February 2025   Accepted: 11 April 2025

References
 1. Martincorena I, et al. Tumor evolution. High burden and pervasive posi-

tive selection of somatic mutations in normal human skin. Science 348, 
880–886 (2015).

 2. Martincorena I, et al. Somatic mutant clones colonize the human esopha-
gus with age. Science. 2018;362:911–7.

 3. Yizhak K, et al. RNA sequence analysis reveals macroscopic somatic clonal 
expansion across normal tissues. Science 364, (2019).

 4. Frank TS, et al. Clinical characteristics of individuals with germline muta-
tions in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 
2002;20:1480–90.

 5. Molyneux G, et al. BRCA1 basal-like breast cancers originate from luminal 
epithelial progenitors and not from basal stem cells. Cell Stem Cell. 
2010;7:403–17.

 6. Lim E, et al. Aberrant luminal progenitors as the candidate target popula-
tion for basal tumor development in BRCA1 mutation carriers. Nat Med. 
2009;15:907–13.

 7. Pal B, et al. A single-cell RNA expression atlas of normal, preneoplastic 
and tumorigenic states in the human breast. EMBO J. 2021;40: e107333.

 8. Shalabi SF, et al. Evidence for accelerated aging in mammary epithelia 
of women carrying germline BRCA1 or BRCA2 mutations. Nat Aging. 
2021;1:838–49.

 9. Kumar T, et al. A spatially resolved single-cell genomic atlas of the adult 
human breast. Nature. 2023;620:181–91.

 10. Nee K, et al. Preneoplastic stromal cells promote BRCA1-mediated breast 
tumorigenesis. Nat Genet. 2023;55:595–606.

 11. Guy CT, et al. Expression of the neu protooncogene in the mammary 
epithelium of transgenic mice induces metastatic disease. Proc Natl Acad 
Sci U S A. 1992;89:10578–82.

 12. Van Keymeulen A, et al. Reactivation of multipotency by oncogenic 
PIK3CA induces breast tumour heterogeneity. Nature. 2015;525:119–23.

 13. Bach K, et al. Time-resolved single-cell analysis of Brca1 associated mam-
mary tumourigenesis reveals aberrant differentiation of luminal progeni-
tors. Nat Commun. 2021;12:1502.

 14. Heintzman ND, et al. Distinct and predictive chromatin signatures of tran-
scriptional promoters and enhancers in the human genome. Nat Genet. 
2007;39:311–8.

https://github.com/powellgenomicslab/Nebulosa
https://github.com/powellgenomicslab/Nebulosa
https://doi.org/10.1186/s12943-025-02331-9
https://doi.org/10.1186/s12943-025-02331-9


Page 18 of 18Landragin et al. Molecular Cancer          (2025) 24:127 

 15. Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and 
why? Mol Cell. 2013;49:825–37.

 16. Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles 
histone modifications and transcription factors in complex tissues. Nat 
Biotechnol. 2021;39:825–35.

 17. Langille E, et al. Loss of Epigenetic Regulation Disrupts Lineage Integrity, 
Induces Aberrant Alveogenesis, and Promotes Breast Cancer. Cancer 
Discov. 2022;12:2930–53.

 18. Wolf FA, et al. PAGA: graph abstraction reconciles clustering with 
trajectory inference through a topology preserving map of single cells. 
Genome Biol. 2019;20:59.

 19. Tirosh I, et al. Dissecting the multicellular ecosystem of metastatic mela-
noma by single-cell RNA-seq. Science. 2016;352:189–96.

 20. Gao R, et al. Delineating copy number and clonal substructure in human 
tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608.

 21. Yang J, et al. Guidelines and definitions for research on epithelial-mesen-
chymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52.

 22. Fazilaty H, et al. A gene regulatory network to control EMT programs in 
development and disease. Nat Commun. 2019;10:5115.

 23. Lv Z-D, et al. Silencing of Prrx2 Inhibits the Invasion and Metastasis of 
Breast Cancer both In Vitro and In Vivo by Reversing Epithelial-Mesenchy-
mal Transition. Cell Physiol Biochem. 2017;42:1847–56.

 24. Ye X, et al. Distinct EMT programs control normal mammary stem cells 
and tumour-initiating cells. Nature. 2015;525:256–60.

 25. Erickson A, et al. Spatially resolved clonal copy number alterations in 
benign and malignant tissue. Nature. 2022;608:360–7.

 26. Jakubek YA, et al. Large-scale analysis of acquired chromosomal altera-
tions in non-tumor samples from patients with cancer. Nat Biotechnol. 
2020;38:90–6.

 27. Gao T, et al. A pan-tissue survey of mosaic chromosomal alterations in 
948 individuals. Nat Genet. 2023;55:1901–11.

 28. Karaayvaz-Yildirim M, et al. Aneuploidy and a deregulated DNA damage 
response suggest haploinsufficiency in breast tissues of BRCA2 mutation 
carriers. Sci Adv 6, eaay2611 (2020).

 29. Lee H-S, Park J-H, Kim S-J, Kwon S-J, Kwon J. A cooperative activation loop 
among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-
strand break repair. EMBO J. 2010;29:1434–45.

 30. Fridman AL, Tainsky MA. Critical pathways in cellular senescence and 
immortalization revealed by gene expression profiling. Oncogene. 
2008;27:5975–87.

 31. Collado M, Serrano M. Senescence in tumours: evidence from mice and 
humans. Nat Rev Cancer. 2010;10:51–7.

 32. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.
 33. Whiteaker JR, et al. CPTAC Assay Portal: a repository of targeted prot-

eomic assays. Nat Methods. 2014;11:703–4.
 34. Durante MA, et al. Single-cell analysis reveals new evolutionary complex-

ity in uveal melanoma. Nat Commun. 2020;11:496.
 35. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spa-

tially resolved, highly multiplexed RNA profiling in single cells. Science 
348, aaa6090 (2015).

 36. Jin S, et al. Inference and analysis of cell-cell communication using Cell 
Chat. Nat Commun. 2021;12:1088.

 37. Shurin MR. Osteopontin controls immunosuppression in the tumor 
microenvironment. J Clin Invest. 2018;128:5209–12.

 38. Klement JD, et al. An osteopontin/CD44 immune checkpoint con-
trols CD8+ T cell activation and tumor immune evasion. J Clin Invest. 
2018;128:5549–60.

 39. Bala P, et al. Aberrant cell state plasticity mediated by developmental 
reprogramming precedes colorectal cancer initiation. Sci Adv 9, eadf0927 
(2023).

 40. Burdziak C, et al. Epigenetic plasticity cooperates with cell-cell interac-
tions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023).

 41. Bartosovic M, Castelo-Branco G. Multimodal chromatin profiling using 
nanobody-based single-cell CUT&Tag. Nat Biotechnol. 2023;41:794–805.

 42. Ansieau S, et al. Induction of EMT by twist proteins as a collateral effect 
of tumor-promoting inactivation of premature senescence. Cancer Cell. 
2008;14:79–89.

 43. Morel A-P, et al. A stemness-related ZEB1–MSRB3 axis governs cellular 
pliancy and breast cancer genome stability. Nat Med. 2017;23:568–78.

 44. De Blander H, et al. Cooperative pro-tumorigenic adaptation to onco-
genic RAS through epithelial-to-mesenchymal plasticity. Sci Adv 10, 
eadi1736 (2024).

 45. Harper KL, et al. Mechanism of early dissemination and metastasis in 
Her2+ mammary cancer. Nature. 2016;540:588–92.

 46. Chan JM, et al. Lineage plasticity in prostate cancer depends on JAK/STAT 
inflammatory signaling. Science. 2022;377:1180–91.

 47. Lin Y, et al. Normal breast tissues harbour rare populations of aneuploid 
epithelial cells. Nature. 2024. https:// doi. org/ 10. 1038/ s41586- 024- 08129-x.

 48. Williams MJ, et al. Luminal breast epithelial cells of BRCA1 or BRCA2 
mutation carriers and noncarriers harbor common breast cancer copy 
number alterations. Nat Genet. 2024;56:2753–62.

 49. Li R, et al. A body map of somatic mutagenesis in morphologically nor-
mal human tissues. Nature. 2021;597:398–403.

 50. Lee-Six H, et al. The landscape of somatic mutation in normal colorectal 
epithelial cells. Nature. 2019;574:532–7.

 51. Fowler JC, et al. Selection of Oncogenic Mutant Clones in Normal Human 
Skin Varies with Body Site. Cancer Discov. 2021;11:340–61.

 52. Li CM-C, et al. Brca1 haploinsufficiency promotes early tumor onset and 
epigenetic alterations in a mouse model of hereditary breast cancer. Nat 
Genet. 2024;56:2763–75.

 53. Pathania S, et al. BRCA1 haploinsufficiency for replication stress suppres-
sion in primary cells. Nat Commun. 2014;5:5496.

 54. Network CGA. Comprehensive molecular portraits of human breast 
tumours. Nature. 2012;490:61–70.

 55. Jonkers J, et al. Synergistic tumor suppressor activity of BRCA2 and p53 in 
a conditional mouse model for breast cancer. Nat Genet. 2001;29:418–25.

 56. Liu X, et al. Somatic loss of BRCA1 and p53 in mice induces mammary 
tumors with features of human BRCA1-mutated basal-like breast cancer. 
Proc Natl Acad Sci U S A. 2007;104:12111–6.

 57. Blom S, et al. Systems pathology by multiplexed immunohistochemistry 
and whole-slide digital image analysis. Sci Rep. 2017;7:15580.

 58. Bankhead P, et al. QuPath: Open source software for digital pathology 
image analysis. Sci Rep. 2017;7:16878.

 59. Kaya-Okur HS, et al. CUT&Tag for efficient epigenomic profiling of small 
samples and single cells. Nat Commun. 2019;10:1930.

 60. Stuart T, et al. Comprehensive integration of single-cell data. Cell. 
2019;177:1888-1902.e21.

 61. Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene 
signature scoring. Comput Struct Biotechnol J. 2021;19:3796–8.

 62. Granja JM, et al. ArchR is a scalable software package for integrative 
single-cell chromatin accessibility analysis. Nat Genet. 2021;53:403–11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/s41586-024-08129-x

	Epigenomic disorder and partial EMT impair luminal progenitor integrity in Brca1-associated breast tumorigenesis
	Abstract 
	Introduction
	Results
	Epigenomic integrity and cell identity is disrupted in Brca1Trp53-deficient mammary glands
	Detection of a rare, epigenetically-primed pre-tumoral cell state
	Cells in a pre-tumoral state display signs of cell cycle defects and undergo partial EMT
	Features of pre-tumoral cell state are detected in early-stage breast cancers and in mammary glands of BRCA1m carriers
	Luminal cells in pre-tumoral state activate immunosuppressive and FGF signaling

	Discussion
	Methods
	Experimental methods
	Animal models
	Ethics statement
	Immunofluorescence
	Image acquisition and analysis of immunofluorescence data
	Senescence-associated-beta-galactosidase staining
	Multiplex histological staining (multiplex IHC)
	Overlay of multiplex IHC stainings
	Quantification of multiplex IHC images
	Mammary gland & tumor dissociation and flow cytometry
	scRNA-seq data generation
	snCUT&Tag data generation
	MERFISH data generation


	Computational methods
	Processing of scRNA-seq datasets
	Clustering, UMAP reduction and cell annotation
	Partition-based graph abstraction (PAGA)
	Copy number variation (CNV) inference from scRNA-seq data
	Pathway enrichment and signature analysis
	Analysis of snCUT&Tag datasets_Preprocessing
	Analysis of snCUT&Tag datasets_cluster annotation
	Analysis of snCUT&Tag datasets_2D basal-LP plots
	Analysis of PanCancer breast and CPTAC datasets
	Transcription factor (TF) enrichment analysis
	Preprocessing of MERFISH datasets
	Analysis of MERFISH datasets & identification of expression patterns of the pre-tumoral signature

	Acknowledgements
	References


